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Pathogenic variants in the fibroblast growth factor receptor 3 (FGFR3) gene are responsible for a

broad spectrum of skeletal dysplasias, including achondroplasia (ACH). The classic phenotype of

ACH is caused by two highly prevalent mutations, c.1138G>A and c.1138G>C (p.Gly380Arg). In

the homozygous state, these variant results in a severe skeletal dysplasia, neurologic deficits, and

early demise from respiratory insufficiency. Although homozygous biallelic mutations have been

reported in patients with ACH in combination with hypochondroplasia or other dominant skeletal

dysplasias, thus far, no cases of heterozygous biallelic pathogenic ACH-related variants in FGFR3

have been reported. We describe a novel phenotype of an infant with two ACH-related mutations

in FGFR3, p.Gly380Arg and p.Ser344Cys. Discordant features from classic ACH include atypical

radiographic findings, severe obstructive sleep apnea, and focal, migrating seizures. We also report

the long-term clinical course of her father, who harbors the p.Ser344Cys mutation that has only

been reported once previously in a Japanese patient. The phenotype of heterozygous biallelic

mutations in FGFR3 associated with ACH is variable, underscoring the importance of recognition

and accurate diagnosis to ensure appropriate management.
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1 | INTRODUCTION

Pathogenic variants in the fibroblast growth factor receptor 3 (FGFR3)

gene underlie a broad spectrum of skeletal dysplasias. These encom-

pass hypochondroplasia (HCH, OMIM #146000), achondroplasia (ACH,

OMIM #100800), severe achondroplasia with developmental delay and

acanthosis nigricans (SADDAN, OMIM# 616482), and the lethal thana-

tophoric dysplasia (TD, OMIM# 187600) (Bonaventure et al., 1996;

Martínez-Frías, de Frutos, Bermejo, Nieto, & ECEMC Working Group,

2010; Rousseau et al., 1994; Tavormina et al., 1999, 1995).

Almost all ACH patients have one of two common mutations,

c.1138G>A or c.1138G>C (p. Gly380Arg). These mutations constitu-

tively activate the FGFR3 receptor, causing abnormal membranous

ossification, suppressing chondrocyte growth and proliferation, and

ultimately hindering bone elongation (Bellus et al., 1995; Sahni et al.,

1999; Shiang et al., 1994; Su et al., 1997). Homozygous p. Gly380Arg

variants lead to a lethal skeletal dysplasia with a reduced thoracic cage,

neurologic deficits from CNS anomalies, cervicomedullary stenosis, and

stillbirth or neonatal demise from respiratory insufficiency (Stanescu,

Stanescu, & Maroteaux, 1990).

Biallelic variants in FGFR3 causative for ACH and HCH have been

reported in several patients with a milder skeletal phenotype (Chitayat

et al., 1999; Couser et al., 2017; Flynn & Pauli, 2003; Huggins et al.,

1999; Sommer, Young-Wee, Frye, & Reynolds, 1987) than homozygous

ACH or coinheritance of mutations in genes causative for ACH and

another dominant skeletal dysplasia, which usually presents with neo-

natal death due to respiratory insufficiency (Unger et al., 2001; Young,

Ruggins, Somers, Zuccollo, & Rutter, 1992). We report a patient with

heterozygous biallelic ACH-related variants in FGFR3, p.Gly380Arg, and

p.Ser344Cys, manifesting a skeletal dysplasia more severe than classic

ACH, accompanied by restrictive lung disease, severe obstructive sleep

apnea, and seizures. We also report the clinical outcome of her father,
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who harbors the rare p.Ser344Cys variant that has only been reported

once in a Japanese infant.

2 | CLINICAL REPORT

Patient 1: The female index case was suspected to have a skeletal dys-

plasia on second trimester ultrasound scanning due to findings of

shortened long bones and deceleration of linear growth, ascribed to

ACH given the family history of both parents with ACH. No other pre-

natal abnormalities were observed and no prenatal testing was under-

taken. She was born at 38 weeks 4 days gestation via cesarean section

for breech presentation and maternal pelvic insufficiency due to ACH.

Family history is significant for the 25-year-old mother with classic

ACH and the p.Gly380Arg mutation and the 29-year-old father with

atypical ACH and the p.Ser344Cys mutation. The family is of mixed

European heritage and there is no known consanguinity.

At birth, the proband manifested frontal bossing, wide-open fonta-

nelles, midface hypoplasia, micrognathia, trident hands with brachydac-

tyly, and redundant skin folds, although her phenotype appeared more

severe than classic ACH. Birth weight was 2.88 kg (20th percentile),

length 44 cm (0.7th percentile, 25SD), and head circumference

37.0 cm (50th percentile) on ACH charts (Hoover-Fong, McGready,

Schulze, Barnes, & Scott, 2007; Horton, Rotter, Rimoin, Scott, & Hall,

1978). She had severe rhizomelic shortening of the upper and lower

limbs, a small, bell-shaped chest, limited elbow extension and marked

hypermobility of her fingers, knees, and ankles (Figure 1a,b). There was

no hepatosplenomegaly or acanthosis nigricans. Sequencing of FGFR3

revealed two pathogenic variants in trans; c.1138G>C (p.Gly380Arg)

and c.1031C>G (p.Ser344Cys). The latter is not present in population

databases and in silico scores predict pathogenicity, and is classified as

3P by the ACMG-AMP Sherloc criteria (Nykamp et al., 2017).

In addition to classic radiographic findings of ACH, a skeletal

survey at 3 weeks of age revealed moderate platyspondyly and short

AP diameter of the ribs (Figure 1c). At 2 months, she was hospital-

ized for apneic episodes and non-febrile seizures of unclear etiology.

An EEG showed bilateral temporal lobe seizures, which were treated

with levetiracetam. An MRI showed normal temporal lobes and no

myelomalacia or structural abnormalities of the brain. Moderate cer-

vical canal stenosis was noted, typical for ACH, without associated

cord compression (Figure 1d,e). Polysomnography (PSG) showed

moderate obstructive sleep apnea with an apnea-hypopnea index

(AHI) of 34/hr (normal<5/hr). Echocardiogram was normal. She was

started on nighttime oxygen at 0.5 L/min. Repeat PSG at 18 months

showed worsening sleep apnea with an increase of AHI to 94/hr.

She underwent an adenotonsillectomy at 20 months resulting in

mild improvement. Her thoracolumbar kyphosis worsened at age 18

months, with new anterior inferior beaking of L2, atypical for ACH

(Figure 2a). MRI of the brain and cervical spine at 20 months for

new-onset upper motor neuron signs showed further progression of

cervical canal stenosis with new upper cervical myelomalacia, new

inferior beaking of the cerebellar tonsils, and new mild to moderate

lateral and third ventriculomegaly (Figure 2b–d), prompting cervical

decompression at 22 months of age.

Postsurgical PSG at 23 months showed significant improvement of

her sleep apnea with an overall AHI of 7.2/hr. Her weight was 7.1 kg

(<5th percentile, 22SD), length 59 cm (<5th percentile, 22SD), and

head circumference 51.5 cm (20th percentile) on ACH charts. She had

a normal neurologic examination and no cognitive or language delays

but had delayed ACH-adjusted gross motor development as she was

not sitting independently. She has bilateral mild sound field conductive

hearing loss due to Eustachian tube dysfunction. She continues on lev-

etiracetam although she has not had a seizure since 2 months of age

and her MRI has normalized.

FIGURE 1 Early imaging of proband. (a,b) Frontal and profile view of patient 1. (c) Skeletal survey at age 3 weeks. Atypical radiographic

findings for classic ACH demonstrated are moderate platyspondyly (arrow) and short AP diameter of the ribs. (d,e) MRI brain and upper

cervical spine at age 2 months. Sagittal T1 (d) and axial T2 at level of upper cervical cord (e) images show diffuse moderate cervical canal

stenosis and narrowing of the foramen magnum (asterisks). T1 hypointense and T2 hyperintense CSF is noted around the upper cervical

cord. No cord compression or cord signal abnormality [Color figure can be viewed at wileyonlinelibrary.com]
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Patient 2: The proband’s father was born to a mother of normal

stature and he was given up for adoption at 6 months of age. Neonatal

history was significant for failure to thrive requiring gastrostomy feed-

ings and respiratory insufficiency requiring home oxygen therapy until

17 months of age. He continued on metaproterenol treatment for his

ongoing respiratory difficulties. He was evaluated at 23 months of age

for severe failure to thrive and difficulty breathing. His length was

63.3 cm (<5th percentile), weight was 5.42 kg (<5th percentile), and

OFC was 63 cm (>95th percentile) on ACH charts. He manifested

marked hypotonia, generalized decreased muscle mass, diminished

deep tendon reflexes, and limited extension of both elbows. He had a

narrow skull base and a wide-open anterior fontanelle. He lacked mid-

face hypoplasia and rhizomelia. Genetic testing for the common FGFR3

variants was negative. Central sleep apnea prompted CPAP around age

7–8 years, and he continues presently. He had severe thoracolumbar

kyphosis requiring surgical correction at 9 years of age, which was

complicated by hardware failure and osteomyelitis of the spine. Post-

surgical MRI showed marked wedging of the T10 vertebral body, and

less severe wedging of the contiguous vertebrae. He did not have any

social or intellectual delays, seizures, hearing loss, or hydrocephalus. At

30 years of age, he has rhizomelic shortening of all extremities without

marked midface hypoplasia, frontal bossing, or acanthosis nigricans.

Although he has atlantoaxial instability, this has not warranted surgical

intervention. Aside from nocturnal respiratory support, he remains in

good health and is gainfully employed as a teacher.

3 | DISCUSSION

Herein, we report the outcome of heterozygous biallelic pathogenic

FGFR3 variants in a patient with a novel ACH-plus phenotype. The

common ACH p.Gly380Arg mutation and a much rarer ACH-related p.

Ser344Cys FGFR3 variant, which was previously reported as patho-

genic for ACH and not HCH, coexist in this patient as the result of

inheritance from her ACH-affected parents. In contrast to homozygous

p.Gly380Arg mutations, this combination has not resulted in a lethal

outcome.

The rarer paternally inherited FGFR3 variant p.Ser344Cys has been

recently reported as pathogenic in an infant case of heterozygous ACH

manifesting as distinctive severe platyspondyly (Takagi et al., 2015).

Similarly, our proband (III.1 in Supporting Information Figure 1) has

severe platyspondyly atypical for classic ACH, and her father’s (Support-

ing Information II.1) spinal imaging also described contiguous platyspon-

dyly, suggesting a specific genotype-phenotype correlation. Although

obstructive apnea-hypopnea is common in children with ACH (Tenconi

et al., 2017), both of our patients (Supporting Information III.1 and II.1)

experienced atypical recurrent apneic spells in infancy. The similarity to

the previous case (Takagi et al., 2015) suggests this may be a recurrent

outcome associated with the p.Ser344Cys mutation, although further

cases are needed to confirm this.

It is likely that the severity of vertebral flattening and smaller chest

in patients with this particular mutation predisposes to a more severe

restrictive lung disease than classic ACH. There may be an increased

risk for additional respiratory complications, since Supporting Informa-

tion III.1 has persistent moderate sleep apnea despite adenotonsillec-

tomy and cervical decompression. None of the patients with the p.

Ser344Cys mutation reported thus far (N53 including present two

cases, all heterozygous) have cognitive delays, acanthosis nigricans, or

long bone bowing typically seen in patients with other severe dominant

FGFR3-related skeletal dysplasias (Zankl et al., 2008).

Whether the non-febrile seizure seen in our proband (Supporting

Information III.1) is attributable to her FGFR3 mutations, apnea-induced

hypoxia, or other causes remains to be elucidated. Seizures associated

with temporal lobe dysplasia have been described in homozygous p.

Gly380Arg patients and other severe forms of FGFR3-related skeletal

dysplasias (Kannu & Aftimos, 2007; Philpott et al., 2013; Romeo et al.,

FIGURE 2 Follow up imaging of proband. (a) Thoracolumbar spine

lateral radiograph at age 18 months. There is further accentuation

of the thoracolumbar kyphosis around the L2 vertebra, which now

has prominent anterior inferior vertebral body beaking (black

arrow), which is also atypical of heterozygous ACH. Other

thoracolumbar vertebrae demonstrate a bullet-shaped configuration

of the vertebral bodies with increased posterior scalloping. (b–d)

MRI brain and upper cervical spine at age 20 months. Sagittal T1

(b), sagittal T2 (c), and axial T2 (d) demonstrate new central T1

hypointense and T2 hyperintense signal in the upper cervical cord

consistent with myelomalacia and reduced amount of CSF signal

surrounding the upper cervical cord compared to baseline imaging

(white arrows). There is new inferior pointing of the cerebellar ton-

sils. New mild to moderate lateral and third ventriculomegaly (not

shown) was also demonstrated
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2014; Zankl et al., 2008). However, our proband lacks any structural

brain abnormalities. Patients with seizures and temporal lobe abnormal-

ities all had heterozygous mutations within the transmembrane or tyro-

sine kinase domains of FGFR3, which is demonstrated in murine

models to increase cortical progenitor proliferation and decrease apo-

ptosis during cortical brain development, presumably predisposing to

temporal lobe dysplasia, and propensity to develop seizures (Inglis-

Broadgate et al., 2005; Thomson, Pellicano, & Iwata, 2006). The p.

Ser344Cys mutation is located in the highly conserved IgIII domain of

FGFR3 as opposed to the transmembrane location of the common p.

Gly380Arg mutation (Supporting Information Figure 2), which may

explain the absence of temporal lobe abnormalities and intellectual

delay in our proband and her father.

Molecular confirmation in clinically and radiographically assigned

ACH by targeted p.Gly380Arg mutation testing varies according to

individual clinician decision and is often not undertaken due to the

assumption that the diagnosis is correct and the result would not

change medical management. No formal molecular testing guidelines

exist for ACH, although expert opinion suggests full sequencing of

FGFR3 if clinical diagnosis is uncertain, atypical features are present, or

similar skeletal dysplasia conditions are suspected. Our report illus-

trates the importance of an accurate molecular diagnosis in patients

with ACH with atypical features. Ongoing discoveries of novel FGFR3

variants are revealing that certain genotypes may have important impli-

cations for health outcomes early in life such as a more severe restric-

tive respiratory disease than otherwise expected for classic forms of

ACH (Xue et al., 2014). Rare variants in FGFR3 may occur with greater

prevalence than is currently understood. We conclude that DNA

sequencing of all exons of FGFR3 should be considered in ACH patients

with atypical features, particularly vertebral differences such as platy-

spondyly, severe apnea or restrictive lung disease, worsening cervical

canal stenosis, seizures, or parents with a skeletal dysplasia. Better

delineation of the various ACH phenotypes and possible correlation

with genotypes are required to guide individualized patient

management.
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