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DNA Methylation Signature for EZH2 Functionally
Classifies Sequence Variants
in Three PRC2 Complex Genes
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and Rosanna Weksberg1,29,30,32,34,*

Weaver syndrome (WS), an overgrowth/intellectual disability syndrome (OGID), is caused by pathogenic variants in the histone meth-

yltransferase EZH2, which encodes a core component of the Polycomb repressive complex-2 (PRC2). Using genome-wide DNA methyl-

ation (DNAm) data for 187 individuals withOGID and 969 control subjects, we show that pathogenic variants in EZH2 generate a highly

specific and sensitive DNAm signature reflecting the phenotype of WS. This signature can be used to distinguish loss-of-function from

gain-of-function missense variants and to detect somatic mosaicism. We also show that the signature can accurately classify sequence

variants in EED and SUZ12, which encode two other core components of PRC2, and predict the presence of pathogenic variants in un-

diagnosed individuals with OGID. The discovery of a functionally relevant signature with utility for diagnostic classification of sequence

variants in EZH2, EED, and SUZ12 supports the emerging paradigm shift for implementation of DNAm signatures into diagnostics and

translational research.

Introduction

Weaver syndrome (WS [MIM: 277590]), an overgrowth/in-

tellectual disability syndrome (OGID), is characterized by

pre- and postnatal overgrowth, accelerated osseous matu-

ration, characteristic craniofacial features, and variable

intellect.1 Sequence variants in EZH2 (Enhancer of Zeste,

Drosophila, homolog 2 [MIM: 601573]) are the primary re-

ported cause ofWS,2,3 accounting for more than 90% of in-

dividuals. EZH2 encodes part of the catalytic component
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of the polycomb repressive complex 2 (PRC2), which regu-

lates genome-wide chromatin structure and gene expres-

sion through methylation of lysine 27 of histone H3; this

mark drives chromatin condensation and transcriptional

repression.4 EZH2 in combination with EED (embryonic

ectoderm development) and SUZ12 (SUZ12 polycomb

repressive complex 2 subunit) form the core complex of

PRC2. Recently, it has been established that pathogenic

variants in EED (MIM: 605984) and SUZ12 (MIM:

606245) cause two clinically overlapping OGID syn-

dromes, Cohen-Gibson (MIM: 617561) and SUZ12-related

overgrowth syndrome, respectively.5,6

The phenotypic consequences of pathogenic variants in

EZH2 are variable; clinical diagnosis is therefore chal-

lenging in the absence of the characteristic facial pheno-

type. The clinical features can be age dependent, and in

the largest case series to date, fewer than half (47%) of in-

dividuals with EZH2 pathogenic variants were considered

to have the classic Weaver syndrome facial gestalt.1 Tall

stature, with a height at least two standard deviations

(SDs) above the mean, is the most consistent EZH2-related

clinical feature, present in �90% of affected individuals.

Intellectual disability is also common, present in �80%,

but can be very mild. However, tall stature and intellectual

disability are nonspecific and generally common, which

limits their utility as discriminating clinical features of

WS and its related disorders.1

Several studies have shown that WS-associated patho-

genic EZH2 variants cause a loss rather than a gain of enzy-

matic activity. Cohen et al.7 found reduced histone meth-

yltransferase activity using an in vitro assay. In a mouse

model of WS, decreased di- and trimethyl-H3K27 were

identified in homozygous and heterozygous embryos,

thereby supporting a role for reduced methyltransferase

function as the cause of WS.8

We and others have recently found that disorders caused

by pathogenic sequence variants in epigenes (genes encod-

ing proteins that demonstrate ‘‘epigenetic’’ functions) may

cause cells to change their typical DNA methylation

(DNAm)and transcriptional profiles. Individualswithpath-

ogenic variants in some epigenes exhibit disorder-specific

signatures comprised of genome-wide, multilocus DNA

methylation alterations. These signatures can be used to

functionally classify sequence variants, with high sensi-

tivity and specificity and to improve our understanding of

the pathophysiology of the associated genetic disor-

der.9–15 We have also shown that pathogenic sequence var-

iants in clinically overlapping, genetically distinct disorders

may lead to similar epigenetic patterns of regulatory disrup-

tion. Our group has recently reported this phenomenon in

Kabuki syndrome (KS) types 1 and 2, for which sequence

variants in different causative genes (KMT2D [MIM:

602113], KDM6A [MIM: 300128]) share an epigenetic dis-

ease signature10 and in BAF complex-associated disorders,

we and others have reported similar findings.12,15

In this study, we identified a genome-wide DNAm signa-

ture associated with pathogenic variants in EZH2. We were

successful in using this signature to detect somatic mosai-

cism for EZH2 variants and to classify both gain-of-func-

tion (GoF) and loss-of-function (LoF or hypomorphic)

sequence variants in EZH2. Further, this EZH2 signature

can be used to identify and classify pathogenic sequence

variants in other genes in the PRC2 core complex, namely

EED and SUZ12. These data provide evidence for conver-

gent molecular signatures for three PRC2 complex genes

and highlight the functional relevance of this DNAm

signature for predicting variant pathogenicity, detecting

somatic mosaicism, and most importantly, for discrimi-

nating different functional effects of sequence variants.

Subjects and Methods

Cohort with EZH2 Variants

The research was approved by the Research Ethics board at The

Hospital for Sick Children (REB# 1000038847) and consent was

obtained from participating subjects and/or their parents or guard-

ians. Peripheral blood samples from subjects with EZH2 variants

(n ¼ 40) were used in this study, of whom eight unrelated subjects

were used as a discovery set with a clinical diagnosis of Weaver

syndrome and pathogenic sequence variants in EZH2, seven previ-

ously published in Gibson et al.2 and Cohen and Gibson7 and one

unpublished case (see Table S1). Another unrelated cohort with

clinical diagnosis of WS consisting of eight previously published

WS individuals with pathogenic EZH2 sequence variant as

part of the Childhood Overgrowth Consortium in the UK1 was

used as an independent validation set (Table S2). This EZH2

variant cohort included a familial case series with a pathogenic

EZH2 sequence variant: GenBank: NM_004456.4; c.466A>G

(p.Lys156Glu). The proband has a family history of overgrowth,

and the EZH2 sequence variant segregated with the overgrowth

phenotype over three generations. The family included the pro-

band, two affected siblings, the mother, and the maternal grandfa-

ther.3 An additional test cohort for EZH2 variant classification con-

sisted of 19 samples with EZH2 variants (see Table S9), collected

from PreventionGenetics, USA; from British Columbia Children’s

Hospital at the University of British Columbia, Vancouver, Can-

ada; from St George’s University Hospitals NHS Foundation Trust,

London, UK; from the Department of Human Genetics, Yoko-

hama City University Graduate School of Medicine, Fukuura,

Japan; from Laboratorio di Genetica Medica, ASST Papa Giovanni

XXIII, Piazza OMS, Bergamo, Italy; from the Department of Med-

ical Genetics, University of Alberta, Edmonton, Canada; and from

the Victorian Clinical Genetics Services, Murdoch Children’s

Research Institute, Royal Children Hospital, Victoria, Australia.

Cohort with EED Variants

Three individuals with de novo EED pathogenic variants were pre-

viously reported5–7 and are described in Table S9.

Cohort with SUZ12 Variants

Five individuals with SUZ12 variants were recruited to the study

including one previously reported familial case subject comprised

of the proband and affected father.6 Two individuals with

missense variants in SUZ12 recruited from British Columbia Chil-

dren’s Hospital at the University of British Columbia, Vancouver,

Canada and from the Department of Pediatrics and Adolescent
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Medicine from the University of Hong Kong. One autism-affected

case subject with 17q11.2 dup overlapping SUZ12 identified at the

Hospital for Sick Children, Toronto, Canada. Full description of

the sequence variants is given in Table S9.

All gene variant annotations as well as in silico prediction using

PolyPhen-2, SIFT, and MutationTaster were generated using

Alamut visual 2.11. CADD scores were obtained using CADD data-

base v.1.4.

Control Cohort

Genomic DNA from peripheral bloodwas obtained on a set of con-

trols (n ¼ 23) selected as age- and sex-matched neurotypical con-

trols to the EZH2 discovery set (Table S3). In addition, 148 controls

were used to determine the specificity of the DNAm signature.

These control samples were obtained from the POND Network,

The Hospital for Sick Children, and The University of Michigan

(Dr. Greg Hanna).16 Neurotypical was defined as healthy and

developmentally normal on formal cognitive/behavioral assess-

ments (samples from POND and The University of Michigan) or

via physician/parental screening questionnaires (Hospital for

Sick Children). Additional blood controls were obtained from

publicly available datasets taken from the Gene Expression

Omnibus. In total, we used data from 718 unrelated subjects

from the general population without clinically obvious neurode-

velopmental phenotypes, who hadDNA extracted fromperipheral

blood and had undergone profiling with the Illumina 450k array

(GEO: GSE54670, GSE54399, GSE51245, GSE89353, GSE36064,

GSE128801, GSE53045, GSE40279, GSE42861).17–25 We restricted

subjects to those age <50 years to match our WS cohort and

excluded one control sample, as it presented as outlier based on

principal component analysis (PCA) of autosomal probes. For

detailed information see Table S7 and Figure S5.

DNAm Array Processing

Genome-wide DNAm profiling on control and affected subjects

matched for age and sex was performed at The Center for Applied

Genomics (TCAG), SickKids Research Institute, Toronto, ON, Can-

ada. Genomic DNA from each subject was sodium bisulfite con-

verted using the EpiTect Bisulfite Kit (EpiTect PLUSBisulfite Kit,

QIAGEN), according to the manufacturer’s protocol. Modified

genomic DNA was then processed and analyzed on the Infinium

HumanMethylationEPIC BeadChip (Illumina 850K) according to

the manufacturer’s protocol.26 The distribution of the samples

on the arrays was randomized for both disease and control sam-

ples. All signature-derivation samples (WS and controls) were

run in the same batch.

Quality Control and Normalization

The raw IDAT files were converted into b-values, which represent

DNAm levels as a percentage (between 0 and 1), using the minfi

Bioconductor package in R. Data preprocessing included filtering

out non-specific probes (41,135 probes); probes with detection

p value > 0.05 in more than 25% of the samples (824 probes);

probes with single-nucleotide polymorphic sites (SNPs) located

within 10 bp of the targeted CpG site or a single base extension

as well as probes near SNPs with minor allele frequencies above

1% (n ¼ 29,958); probes with raw beta¼ 0 or 1 in> 0.25% of sam-

ples (n ¼ 21); non-CpG probes (n ¼ 2,932); and X and Y chromo-

some probes (n¼ 19,627) for a total of 91,343 probes removed and

a total of n ¼ 774,516 probes remaining for differential methyl-

ation analysis. Standard quality control metrics in minfi were

used, includingmedian intensity QC plots, density plots, and con-

trol probe plots: all samples passed quality control and were

included in the study.

Differential DNAm Analysis

The analysis was performed using our previously published proto-

col.10 Differential DNAm analysis between WS and controls was

performed at 774,516 CpG sites using beta scores, which represent

DNAm levels as a percentage (between 0 and 1). The b-value from

each sample at the remaining 774,516 CpGs was used for down-

stream analysis and generation of a DNAm signature. Beta values

were logit transformed to M-values using the following equation:

log2(beta/(1-beta)). A linear regression modeling using limma

package27 was used to identify the differentially methylated

probes. We estimated blood cell proportions using Houseman’s al-

gorithm and the Bioconductor packages, minfi and FlowSorted.

Blood.EPIC. This method generates proportions of CD8þ T cells,

CD4þ T, natural killer, B cells, monocytes, and granulocytes

(mainly neutrophils, Neu) (Table S13).28 These estimated values

for each cell component were incorporated into the model matrix

of the regression analysis as covariates along with sex and age. The

analysis was done on the discovery set of 8WS and 23 controls per

the following regression model: DNAm was regressed against

sexþageþCD8TþCD4TþNKþBcellþMonoþNeu for each CpG

site. The generated p values were corrected for multiple testing us-

ing the Benjamini-Hochberg method. A significant difference in

DNAm between WS and control samples for each CpG site was

required to meet the cutoffs of Benjamini-Hochberg adjusted p

values < 0.05 and |Db| R 0.10 (10% methylation differences) as

previously reported.9,10

Generation of Disease Score Classification Model using

Correlation Analysis

We used a previously described pipeline for generating disease

scores using an established disease-specific DNAm signature.9,10

At each of the 229 signature CpGs, a median DNAm level was

computed across the WS individuals (n ¼ 8) used to generate the

signature, resulting in a reference profile. Similarly, a robust me-

dian-DNAm reference profile for the signature controls (n ¼ 23)

was created. The classification of each additional gene variant or

control DNAm sample was based on extracting a vector BRsigR of

its DNAm values in the signature CpGs and comparing BRsigR to

the two reference profiles computed above. EZH2 score was

defined as: EZH2 score ¼ r(BRsigR, WS profile) – r(BRsigR, control pro-

file)) where r is the Pearson correlation coefficient. A classification

model was developed based on scoring each new DNAm sample

using the EZH2 Score: a test sample with a positive score is more

similar to the WS reference profile based on the signature CpGs

and is therefore classified as ‘‘pathogenic’’ whereas a sample with

a negative score is more similar to the control-blood reference pro-

file and is classified as ‘‘benign.’’ The classification is implemented

in R. To test specificity, EPIC array data from 148 additional neuro-

typical controls were scored and classified. To test sensitivity, eight

additional unrelated WS individuals with EZH2 pathogenic vari-

ants were scored and classified.

Generation of Machine Learning Model for Variant

Classification

Using the R package caret, probes with very similar methylation

patterns with correlation greater or equal to 90% (redundant

probes) were removed as we previously described10 leading to a

subset of 119 CpGs. Next, we developed a machine-learning
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model, a support vector machine (SVM) model with linear kernel

that had been trained on the significant CpG sites from the discov-

ery cohorts after further filtering to remove redundant CpGs. The

model was set to the ‘‘probability’’ mode to generate SVM scores

ranging between 0 and 1 (or 0% and 100%), thus classifying sam-

ples as ‘‘WS’’ (high scores) or ‘‘not-WS’’ (low scores). This SVM

model was built as a tool for the classification of variants in

EZH2, EED, and SUZ12.

Identification of Differentially Methylated Regions

To identify differentially methylated regions (DMRs) that are asso-

ciated with EZH2 variants, we used the bumphunting method29

which strengthens the detection of regional differences by

combining differential-methylation patterns across neighboring

CpG sites.30 The bumphunting design matrix accounted for the

potential confounding effects of sex and age and was used to iden-

tify regions with consecutive CpGs nomore than 0.5 Kb apart and

an average regional methylation difference |Db|R 10%. Statistical

significance was established using 1,000 randomized bootstrap it-

erations, as is recommended in the Bioconductor bumphunter

package when accounting for confounders. The resulting DMRs

were post-filtered to retain only those with p value < 0.05 and a

length (number of consecutive CpGs) of at least five CpGs. The

analysis was performed on the same sets of case and control sub-

jects used as the discovery cohort.

Genomic and Gene-Set Enrichment Analyses

For genomic enrichment analysis, the list of 229 CpG sites (fore-

ground genomic regions) was submitted to GREAT (Genomic Re-

gions Enrichment of Annotations Tool)31 using the default set-

tings. We used the set of CpG sites after minfi probe quality

control (n ¼ 774,516) as the background genomic regions.

Gene-set enrichment analysis was performed using g: Profiler to

identify Gene Ontology (GO) Biological Process terms overrepre-

sented in the annotations of genes overlapping the differentially

methylated CpGs. The enriched GO terms with Benjamini-Hoch-

berg corrected p values < 0.05 were reported. The redundant GO

terms were reduced and visualized as interactive networks using

EnrichmentMap app on the Cytoscape platform as previously

described.32

Enzymatic Activity of EZH2

The luminescence assay to determine EZH2 enzymatic activity for

the p.Ala738Thr sequence variant was performed at BPS Biosci-

ence as follows: a 50 ml reactionmix containing 50 mM S-adenosyl-

methionine, EZH2 enzyme (as part of an artificially assembled

PRC2 complex derived from baculovirus expression vectors), and

20 mM phosphate buffer (pH 7.4), 0.05% Tween-20 HMT buffer

2 (BPS #52170) was added to wells coated with the substrate. Incu-

bation was done for 1 h at room temperature, then antibody

against methylated lysine 27 (K27) residue of histone H3 was

added and incubated for 1 h. Secondary horseradish peroxidase

(HRP)-labeled antibody was added and incubated for 30 min.

Finally, HRP chemiluminescent substrates were added and lumi-

nescence was read in using a microplate chemiluminescence

reader. Control replicates were done with two different lot

numbers of baculovirus-expressed human EZH2 bearing the ca-

nonical protein sequence, and a third iteration of the assay was

done with EZH2 bearing a threonine residue at position 738, re-

placing the alanine.

Molecular Protein Modeling

We applied PRODRG,33 a tool for high-throughput crystallog-

raphy of protein-ligand complexes, to build ad hoc topologies of

S-Adenosyl methionine (SAM) and S-Adenosyl homocysteine res-

idues for Gromacs. We performed homology modeling via

Modeler v.9.22,34 setting the MD refinement value to ‘‘refine.ver-

y_slow’’ and leaving the remaining parameters at default. Only

the SET and post-SET domains of EZH2 were modeled to conform

with (1) the absence of known structures for the post-SET domain

and (2) the need to simplify the model also in terms of computa-

tional costs and complexity. As a template structure for the

modeling of SET domain we used 4MI0.35

Energy Minimization and DG Measurements

Potential energy minimization was performed on each EZH/SAH

complex structures with GROMACS 2019 through a multi-step

conjugate gradient algorithm using Amber99-ILDN force-field.36

The minimization procedure automatically stopped when the re-

sulting structure reached an RMSD threshold of 0.01. Estimates

of the Free Energy of binding of each complex was measured via

autodockVina.37

Screening of Subjects Affected by Syndromic

Overgrowth

We tested the DNAm signature generated for EZH2 against DNAm

profiles generated on other syndromic overgrowth cohorts

including subjects with Sotos syndrome and pathogenic variants

in NSD1 (n ¼ 49),9 Tatton-Brown Rahman syndrome and patho-

genic variants in DMNT3A (n ¼ 5),22 and susceptibility to autism

and pathogenic variants in CHD8 (n¼ 10).14 DNAmprofiles at the

229 CpG sites were extracted from each subject and tested using

the disease score correlation matrix against the DNAm profiles of

controls and WS. DNAm profiles for all these subjects were gener-

ated on the Illumina 450k array.

Cohort with Undiagnosed Overgrowth and Intellectual

Disability

Samples with undiagnosed overgrowth and intellectual disability

for whom previous testing failed to identify NSD1 and/or EZH2

coding variants were included in this analysis. These samples

were profiled on the Illumina 450k array as part of a large cohort

study of overgrowth syndromes at the Weksberg lab with samples

collected from the Division of Clinical Genetics at The Hospital

for Sick Children, at the Department of Pediatrics and Adolescent

Medicine from the University of Hong Kong, and at British

Columbia Children’s Hospital at the University of British

Columbia. TheUBC study recruited some samples referred in by in-

ternational collaborators, some of whichwere referred because of a

known variant in EZH2, and others referred in for the purposes of

identifying the cause of undiagnosed overgrowth and/or intellec-

tual disability. Samples included 73 DNAm profiles from blood-

derived DNA generated on the Illumina 450k array. DNAmprofiles

at the EZH2-specific classification signature were extracted from

each subject and tested using the disease score classificationmodel

to establish diagnosis in a search of potential individuals withWS.

Once a DNAmprofile similar toWSwas identified in these undiag-

nosed individuals, next-generation sequencing was performed on

these individuals to identify variants in PRC2 complex members.

Whole-Genome Sequencing

Subjects that were identifiedwith DNAmprofiles similar to theWS

profile were subjected to next-generation sequencing for variant
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identification. About 1 mg of genomic DNA was submitted to

TCAG for genomic library preparation and whole-genome

sequencing. DNA samples were quantified using Qubit High Sensi-

tivity Assay and sample purity was checked using Nanodrop

OD260/280 ratio. 700 ng of DNAwas used as input material for li-

brary preparation using the Illumina TruSeq PCR-free DNA Library

Prep Kit following the manufacturer’s recommended protocol. In

brief, DNA was fragmented to an average size of 400 bp using son-

ication on a Covaris LE220 instrument; fragmented DNAwas end-

repaired, A-tailed, and indexed TruSeq Illumina adapters with

overhang-Ts added to the DNA. Libraries were validated on a Bio-

analyzer DNA High-Sensitivity chip to check for size and absence

of primer dimers and quantified by qPCR using the Kapa Library

Quantification Illumina/ABI Prism Kit protocol (KAPA Bio-

systems). The Validated library was paired-end sequenced on the

Illumina HiSeq X platform following Illumina’s recommended

protocol to generate paired-end reads of 150-bases in length.

Pyrosequencing

Genotyping was performed using quantitative pyrosequencing for

EZH2 variant: GenBank:NM_004456.4; c.2006G>A (p.Ser669Asn)

in a father-child pair. Targeted assay was designed using the

PyroMark Assay Design Software 2.0 (QIAGEN). Primer set se-

quences consisted of forward primer-50-AAGCTGACAGAAGAGG

GAAAGTG-30; reverse primer 50-TCCCAGCTCTGAAACATAC

CA-30 and sequencing primer 50-TTCAAGTTGAACAGAAAG-30.

The amplificationprotocolwas developedusing a biotinylated uni-

versal primer approach. Regions of interest were amplified by PCR

and pyrosequencingwas carried out using the PyroMarkQ24 pyro-

sequencer (QIAGEN) according to the manufacturer’s protocol.

Output data were analyzed using PyroMark Q24 Software

(QIAGEN),whichcalculates the allelicpercentage for eachallele, al-

lowing quantitative comparisons.

Ethics Statement

The study protocol has been approved by the Hospital for Sick

Children Research Ethics Board (REB 1000038847). All the partic-

ipants provided informed consent prior to sample collection. All

samples and records were de-identified before any experimental

or analytical procedures. The research was conducted in accor-

dance with all relevant ethical regulations.

Results

Identification of DNAm Signature in Weaver Syndrome

To identify an EZH2 DNAm signature, we generated

genome-wide DNAm profiles using Infinium Human

MethylationEPIC BeadChip arrays to test DNA from blood

samples of individuals with pathogenic sequence variants

in EZH2 and control subjects. A comprehensive map illus-

trating the specific variants in EZH2 and the number of

affected individuals for each variant is shown in Figure 1.

The complete WS cohort included 21 subjects, all of

whom had clinical features of WS and EZH2 pathogenic

sequence variants identified in molecular diagnostic labo-

ratories (Tables S1 and S2). The Canadian cohort was

used for discovery (n ¼ 8 unrelated individuals) (Table

S1) and the UK cohort was used for validation (n ¼ 8 unre-

lated subjects and n¼ 5 affectedmembers of the same fam-

ily) (Table S2). Both cohorts included individuals from in-

ternational centers. The demographics for the discovery

cohort were as follows: for WS there were five males and

three females and the mean age 5 standard deviation at

sample collection was 16 5 14.7 years (range 1–43 years).

The 23 sex- and age-matched control subjects included

15 males and eight females; their mean age at the time of

sample collection was 15.9 5 9.8 years (range 3–39 years)

(Table S3).

We used our established pipeline as outlined in the Sub-

jects and Methods for signature derivation. Of the 774,516

CpG sites tested for differential DNAm between WS-

affected case subjects and control subjects, we identified

229 statistically significant changes in DNAm across the

Figure 1. Comprehensive Visualization of EZH2 Sequence Variants using ProteinPaint
Schematic representation of EZH2 sequence variants included in the study. Each distinct variant in EZH2 is represented by a disc sized in
proportion to the number of samples and filled with the color representing its class based on the legend. Missense variants which consti-
tute the large proportion of variants in EZH2 are colored in red, nonsense variants in blue, and indels in green. Sequence variants are
positioned by their amino acid coordinates based on EZH2 (GenBank: NM_004456.4, hg19). The dotted vertical lines inside the protein
delineate the boundaries of coding exons and the filled colors within the protein correspond to known protein domains.
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genome at an FDR adjusted p value < 0.05 and |Db|R 0.10

(Table S4). More than 81% of these sites showed hypome-

thylation inWS-affected case subjects compared to control

subjects and the remaining 19% displayed hypermethyla-

tion in WS. Most of these sites were mapped to gene pro-

moter regions within 5 kb of the transcription start site

(Figure S1).

The signature CpG sites were examined using principal

component analysis (PCA) (Figure 2A) and hierarchical

clustering (Figure 2B) to assess their capacity to separate

WS-affected case subjects from control subjects. As seen

in Figure 2, the significant CpGs could be used to segregate

the discovery cohort of WS-affected case subjects from

control subjects. Consistent with the analysis of DNAm

at single CpG sites, regional DNAm analysis using a bum-

phunting approach29 identified several genomic segments

that spanned between 5 and 35 CpG sites overlapping

important, previously reported targets of EZH238 (Table

S5). One example of such a genomic segment is the

HOXA gene cluster, which was also identified as significant

at the level of single CpG analysis.

Validation of the EZH2 DNAm Signature

To test the specificity and sensitivity of the EZH2 DNAm

signature, comprised of 229 CpG sites, we generated

median-methylation profiles of control subjects and WS-

affected case subjects from the discovery cohort, and clas-

sified our independent validation cohort ofWS-affected in-

dividuals (n ¼ 8) and control subjects (n ¼ 148) as either

‘‘WS’’ (positive disease score) or ‘‘not-WS’’ (negative disease

score) based on their DNAm profiles using the correlation-

based classification model (see Subjects and Methods). All

controls showed DNAm profiles similar to the control pro-

file, had negative disease scores, and were classified as ‘‘not-

WS’’ demonstrating 100% specificity (Figure 3A). Each case

Figure 2. EZH2-Specific DNAm Signa-
ture
Principal components analysis (PCA) plot
(A) and corresponding hierarchical clus-
tering (B) (Eucledian distance metrics)
and representative heatmap of 31 samples
(n ¼ 8 WS; n ¼ 23 controls) using
the differentially methylated CpG sites
comprising the EZH2-specific DNAm
signature (229 CpG sites). In both (A)
and (B), samples labeled with red represent
Weaver syndrome, blue samples are con-
trols. On the heatmap, yellow indicates
high DNAm and blue indicates low
DNAm. For the heatmap, data are nor-
malized for visualization (mean ¼ 0,
variance ¼ 1).

in the WS validation cohort clustered

with WS-affected case subjects and

not with control subjects and gener-

ated positive disease scores. There-

fore, the validation cohort demon-

strated 100% sensitivity (Figure 3A, Table S6). We also

tested the ability of the EZH2 signature to classify DNAm

profiles generated from a three-generation family with a

segregating EZH2 variant: GenBank: NM_004456.4;

c.466A>G (p.Lys156Glu). All affected family members

clustered with the WS-affected individuals and had posi-

tive disease scores (Figure 3A, Table S6).

To further assess the specificity of the EZH2 signature, we

evaluated its performance using a collection of control

blood DNAm data extracted from the GEO repository. As

there are very limited control data available for the EPIC

array, we utilized data from Illumina 450k arrays (n ¼

718) (Table S7) as well as control 450k array data from

our group (n ¼ 80) to compare to a subset of the WS-dis-

covery cohort also generated on the 450k array. For this

analysis, we defined 161 CpG sites that overlapped the

EZH2 signature on the EPIC and 450k arrays and used

the correlation-based classification model (see Subjects

andMethods). As seen in Figure 3B, all 798 control samples

had low disease scores for EZH2 (Table S8), so they were

predicted as ‘‘not-WS’’ (i.e., not to have pathogenic vari-

ants in EZH2), again demonstrating 100% specificity of

the signature (Figure 3B). These results highlight the

robustness of the EZH2 signature, as it overcame many

sources of variation such as sex, age, batch, and DNA pro-

cessing methods contained in the GEO cohorts.

Classifying Models for EZH2 Sequence Variants

Using the highly specific and sensitive EZH2 signature, we

tested 19 independent subjects with EZH2 sequence vari-

ants (see Table S9) using the correlation-based model for

variant classification (Table S6, Figure 4A). We found that

ten subjects had positive disease scores and were therefore

classified as ‘‘WS’’ and nine had negative disease scores and

were classified as ‘‘not-WS.’’
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Next, we tested the support vector machine-learning

model (SVM), trained on significant CpG sites from the dis-

covery cohorts, on the validation sets of WS-affected case

subjects and control subjects. This model generated scores

between 0% and 100%, with high scores classified as ‘‘WS’’

and low scores classified as ‘‘not-WS.’’ We found that it

correctly predicted the classification of all WS-affected

case subjects and control samples with 100% accuracy

(Table S10). Then, we used the SVM model on the test

cohort of 19 subjects with EZH2 variants (Table S9,

Figure 4B). Ten out of the 19 variants were classified as

pathogenic or ‘‘WS’’ (scores between 70%–95%) and eight

variants were classified as benign or ‘‘not-WS’’ (scores be-

tween 0%–17%). One subject (described below) had an in-

termediate SVM score of 49%.

The correlation and SVM models were concordant for

predicting the pathogenicity of EZH2 variants in this

testing cohort (Figures 4A and 4B) with one exception.

Both models classified ten of the test cohort samples as

pathogenic and eight as benign. Those classified as patho-

genic included eight with missense variants in EZH2

(Figure 4, Table S9); five of these were de-identified samples

from PreventionGenetics, each with an associated clinical

diagnosis of WS (PG-55, PG-61, PG-75, PG-87, and PG-45).

The other three missense variants included a clinically

affected father-child pair (EX0079 and EX0080, respec-

tively) and one individual (MDL#76455) with an EZH2

variant: GenBank: NM_004456.4; c.2006G>A (p.Ser669-

Asn) inherited from a tall but clinically unaffected father

(MDL#67485). The other two variants predicted to be

pathogenic were copy number variants (CNVs) including

a previously published EZH2 deletion GenBank: NM_

004456.4; EZH2 (partial [exon20] deletion) (25.42 kb dele-

tion involving EZH2 and CUL1) associated with WS6 and

an EZH2 duplication: GenBank: NM_004456.4; c.2196-2_

2211dupAGATACAGCCAGGCTGAT.1 The latter CNV

was identified in an individual diagnosed with WS at birth

(S126694). Although this sample had a positive disease

score, it did not cluster with the majority of WS samples.

Review of the clinical findings for this individual revealed

an atypical presentation, i.e., more severe ID than most in-

dividuals with WS, as well as seizures and contractures,

suggesting the possibility of a dual or more complex ge-

netic diagnosis.

The sample for which discordant results were obtained

was MDL#67485, the father of MDL#76455. Both father

and son were identified to have the same EZH2 variant;

however, the child had a clinical diagnosis of WS while

the father presented with tall stature but no other features

ofWS. The affected son (MDL#76455) had an SVM score of

82% and a positive disease score of 0.04 using the correla-

tion-based model. The SVM score in the father was in the

intermediate range (49%) but he had a negative disease

score of �0.12. Considering the discordant predictions

for the same variant, we investigated the possibility of so-

matic mosaicism for the EZH2 variant in the father’s

blood-derived genomic DNA. Using quantitative pyrose-

quencing, we genotyped the EZH2 variant in both the fa-

ther and the affected child and found that the percentage

of the variant allele was 46% in the blood of the child, but

only 38% in the blood of the father, suggesting somatic

mosaicism.

The eight samples that were classified by both models as

benign included five subjects with undiagnosed OGID

who inherited an EZH2 variant: GenBank: NM_004456.4;

c.553G>C (p.Asp185His). None of these individuals had

the typical features of WS. Limited family history informa-

tion was available; in one case the variant was known to be

inherited from a phenotypically normal parent (Table S9).

Two subjects with EZH2 de novo missense variants and

clinical findings atypical for WS were classified as benign

using both classification models (Figures 4A and 4B). The

subject with the EZH2 variant GenBank: NM_004456.4;

c.897þ5G>A had a height SD þ2.0, head circumference,

A B Figure 3. Testing the Sensitivity and
Specificity of the EZH2-Specific Signature
(A) Plot representing the median-methyl-
ation profiles of WS-affected individuals
(y axis) and control subjects (x axis) using
the EZH2 DNAm signature. The dashed
line is set to represent the decision bound-
ary for which individuals above the
dashed lines have DNAm profiles more
similar to EZH2 signature and below the
dashed line have DNAm profiles more
similar to control subjects. A set of inde-
pendent WS-affected individuals (valida-
tion cohort, purple circles, n ¼ 8) as well
as a WS-affected family (light orange cir-

cles, n ¼ 5 affected members) with EZH2 pathogenic variants were classified as ‘‘WS’’ (i.e., all individuals classified as more similar to
the EZH2 signature than control subjects) indicating high accuracy of the EZH2 DNAm signature. The specificity of EZH2 signature
was estimated on an independent control validation set of 148 control samples (green crossed boxes); all subjects classified as more
similar to control subjects (specificity 100%).
(B) Performance of the EZH2 signature on data generated on 450k array including overlapping WS-affected subjects from the discovery
cohort n¼ 7 (red circles), controls n¼ 80 (blue squares), and GEO controls n¼ 718 (brown squares) generated on 450k array. All control
subjects had DNAm profiles more similar to the control profile and were therefore classified as ‘‘not-WS.’’
WS, Weaver syndrome.
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OFC SDþ1.5 (age of assessment, 6 years), andmoderate in-

tellectual disability with autism spectrum disorder (ASD).

This variant had a negative correlation-based disease

score (�0.3) and low SVM score of 1% and was therefore

classified as benign or ‘‘not-WS.’’ The individual with

EZH2 variant GenBank: NM_004456.4; c.1072C>T

(p.Arg358Cys) was 6’3’’ at 21 years of age with normal

intellect. This variant had a negative disease score of

�0.16 and an SVM score of 17% and was classified as

‘‘not-WS.’’

Next, we tested an interesting de novo EZH2 variant iden-

tified in an individual who presented with a phenotype

characterized by growth failure. This child was born by Ce-

sarean section at 39 weeks gestation for fetal distress. Birth

weight was 2,055 g, length 43 cm, and head circumference

33 cm. There was no family history of WS. She had tran-

sient neonatal hypoglycemia and hypotonia. At 9 months

of age she had a ‘‘clover-leaf’’ shaped skull, large anterior

fontanelle, sparse eyebrows, upslanting palpebral fissures,

and small ears. Development was moderately to severely

delayed. By age 6 years, her weight was 9 kg, length

90 cm, and head circumference < 3rd centile for age.

The EZH2 variant GenBank: NM_004456.4; c.2212G>A

(p.Ala738Thr) in this subject (A1646) was predicted to be

‘‘not-WS’’ with an SVM score of 0% and a negative disease

score of�0.47. Unsupervised hierarchical clustering of this

variant showed that it clustered separately from both con-

trol subjects and from WS-affected individuals but, inter-

estingly, it generated a DNAm profile opposite to that of

the WS-affected individuals and very different from con-

trol individuals (Figures 5A and S2). This suggested that

p.Ala738Thr is a GoF variant rather than a LoF variant

for EZH2, which is also consistent with the phenotypic

presentation (undergrowth rather than overgrowth). To

further assess the putative GoF effect of this variant, a lumi-

nescence enzymatic assay was done at BPS Bioscience to

test the enzymatic activity of EZH2 p.Ala738Thr. As shown

in Figure 5B, this assay demonstrated increased enzymatic

activity of this variant compared to wild-type EZH2.

Next, we performed a de novo modeling of the post-SET

domain of EZH2, building a protein structure including

the Ala738 residue and associated proteins. We used the

S-adenosyl methionine (SAM) and S-adenosyl homocyste-

ine (SAH) structures to obtain the EZH2-SAM and EZH2-

SAH complexes, respectively (Figure S3A). We found that

the substitution of the Ala738 residue to Thr does not

significantly change the affinity for SAM (Figure S3B)

whereas the substitution of the Ala738 residue to Thr in-

duces an intermediate SAM/SAH binding mode featuring

both the rotation of Gln735 side chain into a SAM-favor-

able state and a hydrogen-bond network that involves

the side chains of Gln735, p.Ala738Thr, and Tyr663, lead-

ing to an increased affinity for both cofactors (Figure S3C).

Taken together, these data support the hypothesis that this

mutant form of EZH2 has a higher affinity for an active in-

termediate state of the enzyme, leading to the observed

increased processivity (i.e., GoF).

Shared Functionality in PRC2 Complex Genes

Pathogenic sequence variants in EZH2, SUZ12, and EED,

the core components of the PRC2 complex, have been

associated with three clinically overlapping but distinct

syndromes: Weaver, SUZ12-related overgrowth, and Co-

hen-Gibson syndromes, respectively. Therefore, we tested

the ability of the EZH2 signature to predict the pathoge-

nicity of variants in EED (n ¼ 3) and SUZ12 (n ¼ 4), in in-

dividuals with features that overlap WS and also in an

individual who underwent genome sequencing for investi-

gation of ASD (no other clinical information available),

who was identified to have a 1.4 Mb 17q11.2 dup

including NF1 (MIM: 613113), SUZ12, and several RefSeq

genes (Table S9). We used both the correlation-based and

SVM models to classify these variants. All three subjects

with EED missense variants showed high SVM scores, be-

tween 92% and 96%, and had positive disease scores

(Figure 6, Tables S6 and S10), suggesting a pathogenic

variant. Two subjects with SUZ12 missense variants

(A1765 and EX0066) had high SVM scores (92% and

A B Figure 4. Testing the Ability of the EZH2-
Specific Signature to Classify EZH2 Vari-
ants
(A) Plot representing the median-methyl-
ation profiles of WS-affected (y axis) and
control subjects (x axis) using the EZH2
DNAm signature. A set of independent in-
dividuals with EZH2 sequence variants
(pink squares, n ¼ 19) were classified using
the EZH2 signature. Of the 19 variants, ten
classified as more similar to the EZH2
DNAm profile than controls. The remain-
ing nine variants classified as more similar
to the control profile.

(B) Plot representing the Support Vector machine (SVM) scores (y axis). The SVM prediction model was used to predict pathogenicity of
EZH2 variants based on the DNAm signature. All ten variants predicted as pathogenic in (A) had also very high SVM scores > 70% and
the remaining nine variants had very low SVM scores< 20% except one variant with an SVM score of 49%. Blue arrow represents sample
MDL#67845 (p.Ser669Asn). Orange arrow represents sample S126694 (EZH2_c.2196-2_2211dupAGATACAGCCAGGCTGAT). Green
arrow represents sample A1646 (p.Ala738Thr).
WS, Weaver syndrome.
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96%) and positive disease scores. The third subject

(EX0067) is the father of EX0066, who presented with

mild clinical OGID features including tall stature, promi-

nent forehead, chin crease, and normal intellect, and was

identified to be mosaic for the variant by PCR based deep

sequencing. He was found to have 8.4% mosaicism in

blood leukocytes and 27% mosaicism in hair.6 While the

child had a 96% SVM score and a disease score of þ0.36,

the father had an SVM score of 19% and a disease score

of�0.17. The low level of variantmosaicism in blood likely

accounts for the negative scores and for the benign classi-

fication of this variant in the father. The fourth subject

(M/R728468(2)) with a SUZ12 variant of uncertain signifi-

cance (VUS) had an SVM score of 5% and a disease score of

�0.35. He presented with an atypical phenotype and in-

herited the variant from a clinically normal father,

validating its benign classification. The fifth subject

(EX0209) who harbored a duplication including SUZ12

had an SVM score of 2% and a negative disease score of

�0.27, suggesting that the duplication of SUZ12 is unre-

lated to the OGID phenotype associated with LoF in

SUZ12-related overgrowth syndrome.

Classification of Overgrowth Syndromes

Since overgrowth syndromes caused by heterozygous

sequence variants in epigenes often share overlapping

clinical features, we investigated the DNAm profile gener-

ated on the 450k arrays for Sotos syndrome (n ¼ 49

[MIM: 117550]), Tatton-Brown Rahman syndrome (n ¼ 5

[MIM: 615879]), and susceptibility to ASD (n ¼ 10 [MIM:

615032]) caused by pathogenic variants in NSD1

(MIM: 606681), DNMT3A (MIM: 602769), and CHD8

(MIM: 610528), respectively.9,14,22 The DNAm profiles of

these individuals were compared to 7 WS-affected individ-

uals (with pathogenic EZH2 variants) from the discovery

cohort and 80 control samples generated on the 450k.

All individuals with pathogenic variants in NSD1,

DNMT3A, and CHD8 received a strongly negative disease

score (Figure 7 and Table S11) and were therefore classified

as ‘‘not WS.’’

Classification of Undiagnosed Overgrowth Syndromes

In order to investigate the potential utility of the EZH2

signature as a first-tier diagnostic assay, we compared the

profiles of 73 methylomes generated in our laboratory us-

ing the 450k on blood samples from individuals with

OGID that tested negative for targeted sequencing of

NSD1 and EZH2. The goal of this analysis was to determine

whether disease-specific DNAm signatures could be uti-

lized to improve the diagnostic yield in this patient popu-

lation. Using the EZH2 signature, we were able to identify

two samples that showed a positive disease score of 0.12

and 0.2 (Figure 8, Table S11). These two subjects were clin-

ically diagnosed as WS but targeted testing of EZH2 and

subsequently EED were negative for both individuals.

Since the DNAm profiles for these two subjects clustered

with WS-affected individuals, we performed next-genera-

tion sequencing analysis on a research basis and identified

in each subject a de novo frameshift variants in SUZ12:

GenBank: NM_015355.3; c.1878del (p.Phe626Leufs*7);

A

B

Figure 5. Gain-of-Function Variant in EZH2 Have Opposite DNA Methylation Profile at the EZH2 Signature
(A) Heatmap showing the hierarchical clustering of the DNAm profile of WS individuals (n¼ 8, red) with LoF (hypomorphic) variants in
EZH2, controls (n ¼ 23, blue) and EZH2 GoF variant (p.Ala738Thr; pink) using the EZH2 signature. On the heatmap, yellow indicates
high DNAm and blue indicates low DNAm. The subject with an EZH2 variant in pink display opposite DNAm profile when compared to
WS DNAm profiles. For the heatmap, data are normalized for visualization (mean ¼ 0, variance ¼ 1).
(B) Enzymatic activity of EZH2 GoF variant using an in vitro luminescence assay. Mutant EZH2 (p.Ala738Thr) pre-assembled into PRC2
showed increased EZH2-mediated H3K27 methylation activity.
WS, Weaver syndrome; GoF, gain of function; LoF, loss of function.
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and c.1715_1716insCA (p.Leu572Phefs*11). These two

variants were validated by Sanger sequencing as recently

reported.39 The clinical findings in both individuals were

consistent with those reported in other individuals with

SUZ12-related overgrowth, which has phenotypic overlap

with WS, as recently described.39 These data provide

further evidence for the utility of DNAm profiling as a

first-tier diagnostic tool, in addition to its previously recog-

nized proficiency as a second-tier tool for VUS classifica-

tion.9,10,40

Functional Enrichment of the EZH2 DNAm Signature

Gene-set enrichment analysis was performed using

g:Profiler32 on the 89 genes that overlapped the 229

CpG sites in the EZH2 DNAm signature. The results

demonstrate enrichment for genes with roles in pattern

specification processes, skeletal system development,

and regulation of morphogenesis such as Homeobox A5

(HOXA5 [MIM: 142952]), ALX homeobox 4 (ALX4

[MIM: 605420]), and SIX homeobox 2 (SIX2 [MIM:

604994]) (Figure S4A, Table S12) (Benjamini-Hochberg

corrected p value < 0.01). This enrichment in skeletal

development and organ morphogenesis pathways reflects

the known roles of the PRC2 core complex in cellular

lineage (and subsequent tissue) specification and also re-

flects some of the cardinal features of WS (i.e., tall stature,

advanced osseous maturation, neuronal migration disor-

ders, and developmental delay) (Figure S4B), thereby

further validating the utility of this signature to elucidate

the functional, biological, and molecular impact of EZH2

pathogenic variants.

Discussion

We have identified a highly sensitive and specific EZH2

DNAm signature that can be used to classify missense var-

iants in EZH2 as pathogenic or benign. Notably, this report

offers unique insights about using DNAm signatures to

classify GoF sequence variants and detect somatic mosai-

cism. Further, this signature has utility in classifying

sequence variants in two other genes, EED and SUZ12,

that encode proteins that participate with EZH2 in the

repressive PRC2 complex. Finally, we demonstrated the

first-tier diagnostic capability of this signature, based on

its ability to predict the presence of pathogenic variants

in a PRC2 complex gene (SUZ12) in two individuals with

undiagnosed OGID syndrome.

In the development of DNAm signatures, an important

consideration is the issue of cell type variation. As DNA

methylation varies markedly among all cell types,

including hematopoietic cells,41 it is important to account

for inter-individual differences in cell types of whole

blood samples when analyzing DNAm data from this tis-

sue.42 Here, we estimated the cell proportions in the dis-

covery cohort using the Houseman method28 and

included these estimates as covariates when identifying

EZH2-specific signature. This method uses DNAm mea-

sured in purified blood cells from a small number of

healthy adults to generate cell proportion estimates in

Figure 7. Classification of Subjects with Syndromic Overgrowth
using EZH2 Signature
Plot representing samples with sequence variants in epigenes asso-
ciated with other overgrowth syndromes. These included subjects
with: NSD1 pathogenic variants associated with Sotos syndrome
(n ¼ 49, GEO: GSE74432), DNMT3A pathogenic variants associ-
ated with Tatton-Brown Rahman syndrome (n ¼ 5; GEO:
GSE128801), and CHD8 pathogenic variants associated with mac-
rocephaly and susceptibility to autism (n ¼ 10; GEO: GSE113967).
These data were compared to seven WS-affected subjects from the
discovery cohort and five test individuals with pathogenic muta-
tions in EZH2 which were run on the Illumina 450k. All over-
growth syndrome individuals had DNAm profiles more similar
to control subjects and distinguishable from WS.

Figure 6. Testing the Utility of the EZH2 Signature in Classifying
Sequence Variants in Other Components of the PRC2 Complex
Using the EZH2 signature, we compared the DNAm profiles of
three subjects with EED sequence variants (yellow triangles) and
those with SUZ12 variants (green diamonds) to the DNAm profiles
of controls (blue crossed boxes) and EZH2 pathogenic variants (red
circles). All three subjects with pathogenic variants in EED had
DNAm profiles more similar to the EZH2 profile than control sub-
jects. Two subjects with SUZ12 pathogenic variants also classified
with Weaver syndrome and the three remaining SUZ12 variants
showed DNAm profiles more similar to controls.
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mixed cell populations, such as whole blood. We found no

statistically significant differences in blood cell type

composition between the affected individuals and control

subjects, which aligned with reports of individuals with

EZH2-related overgrowth having typical blood cell compo-

sition (see GeneRevies in Web Resources). Future work

measuring both complete blood counts and DNAm in

the same individuals with WS is needed to confirm the ef-

ficacy of the Houseman method in this context.

PRC2 belongs to the Polycomb group (PcG) protein fam-

ily of chromatin-modifying enzymes that function as re-

pressors of gene expression.43 In mammalian cells, PRC2

is primarily targeted to the unmethylated CpG islands of

inactive developmental genes.44 PRC2 recruitment and

binding to the targeted CpG island is facilitated in part by

polycomb-like proteins (PCLs) and JARID2 which link the

PRC2 complex to genomic sites enriched in CpG dense re-

gions.44,45 In the EZH2 LoF (hypomorphic) state, we

observed a loss of DNA methylation at CpG sites enriched

in promoter regions of developmental genes, which can

lead to transcriptional changes during critical develop-

mental time points resulting in somatic overgrowth charac-

teristic ofWS. In the caseof theEZH2GoF state,weobserved

a gain of methylation at the same CpG sites which can lead

to transcriptional changes during development resulting in

growth restriction. Further work is needed to explore the

underlying transcriptional dysregulation at the gene pro-

moters overlapping the EZH2-specific signature in relevant

cell types and critical time points during development.

Our results support the position that the DNA methyl-

ation changes observed in individuals carrying germline

EZH2 pathogenic variants represent a downstream cascade

of events at the molecular level in response to a genetic

change. These DNAmethylation changes recur across mul-

tiple generations if the genetic change is present, demon-

strating the impact of EZH2 pathogenic variants on epige-

netic programming during embryonic development.

Evidence for this hypothesis is provided by our genome-

wide DNAmfindings in a three-generation family in which

the EZH2 variant segregates from a father to his daughter

and her three sons. All family members showed the same

EZH2-specific epigenotype. This suggests that the same ep-

igenotype was re-established downstream of a dysfunc-

tional PRC2 complex in somatic tissues of each affected

family member, in each generation. We have previously

shown similar findings in a two-generation family where

one father and two affected offspring with inherited path-

ogenic NSD1 variant all share the same NSD1-specific DNA

methylation signature.9

Constitutional pathogenic variants in EZH2 are known

to causeWS;most of these aremissense variants. Thus, pre-

dicting pathogenicity of these variants can present signifi-

cant challenges, which now can be resolved using the

EZH2 signature. Such classifications are particularly useful

for individuals with clinical findings atypical for WS who

carry de novo missense variants in EZH2. The EZH2 signa-

ture, derived from constitutional pathogenic sequence var-

iants, is comprised of differentially methylated CpG sites

in WS-affected individuals relative to control subjects;

the majority (>81%) of these sites are hypomethylated in

WS-affected individuals relative to control subjects,

whereas 19% are hypermethylated. This suggests that

pathogenic EZH2 sequence variants cause a failure of pro-

moter CpG methylation at CpG sites critically important

for normal growth and development. Support for the func-

tional relevance of the DNAm signature comes from the

fact that the most enriched CpG sites and genomic regions

overlap HOX genes, which are known targets of EZH2.38 In

cancer as well, it has been shown that loss of EZH2 contrib-

utes to epigenetic-dependent overexpression of the HOX

genes.38

We show that the EZH2 signature can differentiate the

functional effects of missense variants in EZH2 using two

previously validated classification models specifically cor-

relation-based9,14,15 and machine learning.10,40,46 We pro-

pose that review of the clinical features of subjects carrying

sequence variants in disease-associated genes, such as

EZH2, combined with the application of several methods

to visualize the data in different ways as presented here,

can improve the utility of this highly sensitive and specific

functional assay for variant pathogenicity classification.

We expect that this approach will also be useful for testing

the functionality of non-coding variants in disease-associ-

ated genes. Discordant results using the two different ana-

lytic models were of interest in assessing mosaicism in a fa-

ther with a sequence variant in EZH2 who presented with

Figure 8. Testing the Ability of the EZH2 Signature in Classifying
Undiagnosed OGID-Affected Subjects Based on Their DNAm
Profiles
OGID-affected subjects included in this analysis were previously
tested negative for targeted mutations screening in NSD1 and
EZH2. Out of the 73 subjects with OGID (brown triangles), we
identified that most had DNAm profiles similar to control subjects
(blue squares). Interestingly, we identified two subjects with
DNAm profiles more similar to the EZH2 profile than control sam-
ples. OGID, overgrowth and intellectual disability.
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tall stature, normal intellect, and no other features of WS.

Pyrosequencing studies identified low-level mosaicism in

his blood which is highly relevant for accurate genetic

counseling for the family.

In an individual with an EZH2 missense variant

(GenBank: NM_004456.4; c.2212G>A [p.Ala738Thr])

who presented with growth restriction rather than an over-

growth phenotype, we considered the possibility of a GoF

variant and used three independent approaches to assess

this hypothesis. Utilizing the DNAm signature generated

using LoF sequence variants in EZH2, we identified

DNAm alterations at most CpGs observed in the EZH2

signature but found that these were ‘‘opposite in direction’’

to the DNAm changes in the EZH2 signature. Further sup-

port for a GoF role for this variant was derived from an

in vitro luminescence assay showing increased enzymatic

activity. Finally, protein modeling showed that the

p.Ala738Thr form of EZH2 shows a strong preference for

an intermediate SAM/SAH binding state, which helps to

explain both the increased processivity observed in vitro

and to corroborate the GoF inferred from the individual-

specific methylation profile and the clinical presentation.

It has been shown that methylation of H3K27 by EZH2

requires the presence of two additional proteins: EED and

SUZ12.47 Inactivation of any one of these three protein

subunits severely compromises the enzymatic activity of

PRC2 and results in the reduction of H3K27me3.48–50

Not surprisingly, individuals with EZH2, EED, and SUZ12

pathogenic variants present with overlapping phenotypes,

including generalized overgrowth, similar craniofacial fea-

tures, advanced bone maturation, macrocephaly, and vari-

able degrees of intellectual disability.51 As there are few

specific clinical features that distinguish each of these

three disorders from each other, it is difficult in many of

these individuals, for even the most astute clinician, to

define specific genomic diagnosis in a particular case.

Here we show that the pathogenic sequence variants in

these genes that confer similar phenotypes also confer a

common DNAm signature that represents the functional

effect of PRC2 perturbation during development. As

more individuals with sequence variants in EED and

SUZ12 are identified, it will become possible to assess

whether specific DNAm ‘‘sub-signatures’’ exist for LoF var-

iants in each gene. This will be of great interest to both cli-

nicians and scientists who struggle with elucidating the

boundaries between syndromes bothmolecularly and clin-

ically (lumping versus splitting of syndromes). Although

these three conditions currently carry independent names,

some would argue that they constitute a phenotypic spec-

trum that reflects their integrated molecular actions via a

shared functional complex.

We have shown that the EZH2 signature has 100% spec-

ificity, in that it does not misclassify as positive any indi-

viduals with OGID and pathogenic variants in NSD1,

DNMT3A, or CHD8. This is congruent with what we pub-

lished previously for other OGID signatures such as

NSD1.9 We have also demonstrated that a gene-specific

DNAm signature can be more broadly applicable if that

gene encodes a protein that participates in a functional

complex. This is very important for both first-tier diagnos-

tics and for gene discovery. Our work is distinct from that

reported for the BAF complex12 in which the derivation of

the signature involved many genes in the complex. In this

paper we were able to use the information that the EZH2

signature also reflected the presence of pathogenic variants

in other PRC2 complex genes to efficiently assign a defin-

itive genomic diagnosis to two individuals with features of

OGID. In both individuals, a clinical diagnosis of WS was

suspected, but targeted sequencing for EZH2 and EED

was negative. The fact that DNAm profiles were positive

prompted us to arrange next-generation sequencing for

other genes encoding proteins in the PRC2 complex, lead-

ing to the identification of pathogenic sequence variants

in SUZ12. For the many genes that encode proteins partici-

pating in functional complexes, our approach provides a

valuable paradigm for first-tier diagnostics that could also

play an important role in future novel gene discovery.

There is considerable overlap between germline/consti-

tutional sequence variants observed in WS and the ac-

quired somatic EZH2 sequence variants observed in

myeloid malignancies. Two of the sequence variants pre-

sent in our WS-affected individuals, p.Arg684Cys and

p.Tyr733*, have also been detected as somatically ac-

quired sequence variants in myeloid malignancies.52

These two sequence variants were identified constitution-

ally in seven unrelated individuals in the current series.

None of these individuals have developed malignancies,

though it is noteworthy that the oldest of these seven in-

dividuals is less than 10 years old. Given that myeloid ma-

lignancies associated with somatic EZH2 sequence vari-

ants usually present later in life, it will be important to

follow these individuals with WS who could be at

increased risk of myeloid malignancies not only in

childhood, but also over their lifetime.3 Long-term clin-

ical data for WS will be valuable for time-to-event analysis

that estimates the age-specific malignancy risk in these

individuals.

In summary, this study demonstrates that pathogenic

LoF variants in EZH2 are associated with a highly sensi-

tive and specific DNAm signature that has significant

diagnostic power to classify pathogenic versus benign var-

iants. This study also provides unique finding wherein a

DNAm signature has the ability to distinguish GoF from

LoF variants, as well as the capability to detect somatic

mosaicism of coding EZH2 variants. Notably we also

show that the EZH2 DNAm signature can positively clas-

sify pathogenic sequence variants in two other genes,

EED and SUZ12, encoding proteins in the core PRC2 com-

plex. Finally, we have demonstrated that DNAm signa-

tures for genes that encode proteins in a functional com-

plex can play an important role not only for elucidating

molecular pathophysiology and as a tool for first- and sec-

ond-tier diagnostics, but also for paradigms for new gene

discovery.
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