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Abstract

Arthrogryposis or AMC, arthrogryposis multiplex congenita, is defined as multiple con-

genital joint contractures in more than two joints and in different body areas. The com-

mon cause of all AMC is lack of movement in utero, which in turn can have different

causes, one of which is CNS involvement. Intellectual disability/CNS involvement is

found in approximately 25% of all AMC. AMC with CNS involvement includes a large

number of genetic syndromes. So far, more than 400 genes have been identified as

linked to AMC, with and without CNS involvement. A number of neonatally lethal syn-

dromes and syndromes resulting in severe disability due to CNS malfunction belong to

this group of syndromes. There are several X-linked disorders with AMC, which are pri-

marily related to intellectual disability. A number of neuromuscular disorders may

include AMC and CNS/brain involvement. Careful clinical evaluation by a geneticist

and a pediatrician/pediatric neurologist is the first step in making a specific diagnosis.

Further investigations may include MRI of the brain and spinal cord, electroencephalo-

gram, blood chemistry for muscle enzymes, other organ investigations (ophtalmology,

cardiology, gastrointestinal, and genitourinary systems). Nerve conduction studies, elec-

tromyogram, and muscle pathology may be of help when there is associated peripheral

nervous system involvement. But most importantly, genetic investigations with

targeted or rather whole exome or genome sequencing should be performed. A correct

diagnosis is important in planning adequate treatment, in genetic counselling and also

for future understanding of pathogenic mechanisms and possible new treatments.

A multidiciplinary team is needed both in investigation and treatment.

K E YWORD S

arthrogryposis multiplex congenita, neonatally lethal AMC syndromes, central nervous system

involvement, multi-organ involvement, intellectual disability

1 | INTRODUCTION

Arthrogryposis multiplex congenita, AMC, is defined as congenital

contractures in at least two joint levels and in multiple body areas

(Dahan-Oliel et al., 2019; Hall & Reed, 1982). Its occurrence in around

1/3,000–5,000 live births (Darin, Kimber, Kroksmark, & Tulinius,

2002; Lowry et al, 2010). And there are now more than 400 known

syndromes with arthrogryposis (Hall, 2014). The common background

in all AMC is reduced fetal mobility, which in turn can have many

causes—pathology in the central nervous system including the brain

and anterior horn cells, neuromuscular junction, peripheral nerves,

muscle, connective tissue, teratogens, maternal illness, and limitation

of space in utero. One way to classify the many different syndromes

is to distinguish three main groups: only limb involvement, limb

involvement plus other organ systems, and limb involvement plus cen-

tral nervous system (CNS) involvement (Hall, 2014). The latter group
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includes severe forms, including neonatally lethal forms, and syn-

dromes with intellectual disability of varying severity plus other organ

system involvement, leading to severe functional disability. The preva-

lence of syndromes with intellectual disability with or without struc-

tural brain anomalies among all cases with AMC varies between

25 and 30% (Darin et al., 2002; Hall, 1997).

Classification and diagnosis of patients with AMC can be difficult.

More than 400 known genes that cause AMC can be divided in at least

26 different categories and associated with different pathways, and

there are modifying factors that are still unclear (Hall 2016). Where

brain involvement is the cause of decreased fetal mobility and AMC,

the clinical presentation is often severe. Make a correct diagnosis has

several issues. In prenatal diagnosis it is a very important information

for parents if there is CNS involvement, as that usually implies a poor

prognosis in terms of function and autonomy, and even lethality, and

may affect decisions about continuing the pregnancy. In neonatally

lethal forms it is important for the parents to know the cause, for

genetic counseling and, if possible, for prenatal diagnosis in following

pregnancies. In the child with arthrogryposis and brain involvement, a

specific diagnosis makes it possible to make a prognosis for future

development, and plan treatment and support accordingly—and in the

future, medical treatment for some of these disorders may be possible.

In this article, we will describe some examples of the many syn-

dromes with arthrogryposis and brain involvement. We will also men-

tion some important points in investigation/workup of the child with

AMC and CNS involvement, and discuss treatment and care.

2 | INVESTIGATIONS

A multidisciplinary approach is paramount in investigating a child with

AMC and CNS involvement. Most of these syndromes have a genetic

cause. Family history, possible maternal illness, history of pregnancy

and delivery should be asked about. A careful clinical examination is

the first step in order to direct the genetic investigation and to per-

form a comprehensive organ investigation. Joint involvement, includ-

ing jaws and spine, and documentation of type of involvement is

important. Flexion or extension of affected joints, tightly fixed or flexi-

ble contractures, hypermobile joints, luxation or subluxation; spinal

malpositioning, kyphosis or scoliosis; impaired mouth opening, are all

important signs to look for and document. Associated findings includ-

ing facial characteristics and dysmorphic signs should be registered.

Photographs of the child are of great value both for diagnosis and

follow-up, and in the older child or adult patient photos from the neo-

natal period are often very helpful for diagnostic purposes. X-rays of

affected joints and limbs are usually performed as part of the orthope-

dic workup. Often, not only skeletal and neuromuscular but also other

organ systems are involved, such as cardiovascular, respiratory, gas-

trointestinal, genitourinary, ophthalmological, and oto-rhino-laryngeal,

depending on the underlying cause. A careful neurological evaluation

needs to be done: muscle tone and muscle strength should be evalu-

ated, as well as neonatal reflexes, deep tendon reflexes, and cranial

nerve functions. Dysmorphic signs, seizures, decreased alertness in

the child, and delayed general development may be early signs of CNS

involvement.

MRI of the central nervous system and electroencephalogram

(EEG) are first tier investigations for respectively, CNS structural and

functional anomalies. If it is unclear whether there is central or periph-

eral nervous system involvement, especially during the first months of

life, or if there is a suspicion of associated peripheral nervous system

or muscle involvement, neurophysiology studies with electromyogram

(EMG), nerve conduction studies (NCS), and muscle pathology might

be relevant. In order to rule out associated organ malformations and

potential comorbidities, cardiac and abdominal ultrasonography

should be performed. Creatine kinase (CK) levels and routine blood

and urine chemistry to search for functional organ anomalies for

instance of the liver or kidney can be of diagnostic value. On the con-

trary, more complex metabolic investigations should only be per-

formed if there is a high clinical suspicion since metabolic causes of

AMC with CNS involvement remain rare. Evaluation and investigation

of cognitive function should always be asked for when there are signs

of CNS involvement, and in intellectual disability hearing and vision

should be assessed, as well as neuroophtalmological examination.

Chromosomal analysis or CGH array is still the first step in genetic

investigation today. When there is a clinical suspicion of a single gene

syndrome, targeted gene or gene panel analysis may give the correct

diagnosis. In many cases where the diagnosis is unclear, however,

whole exome and in the near future whole genome analysis will be

the best alternative for genetic diagnosis (Todd et al., 2015, Bayram

et al., 2016, Dieterich, Le Tanno, Kimber, Hall, & Giampietro, 2019).

AMC can be diagnosed prenatally with ultrasound investigation

(Skaria, Dahl, & Ahmed, 2019). Prenatal diagnosis is important both

for parental counseling and to enable planning of a safe delivery.

Cesarean section may be indicated if the joint contractures are severe,

as there will otherwise be a risk for fracturing of bones during deliv-

ery. Investigation with fetal MRI may also give further information

regarding possible CNS involvement/brain and other anomalies

(Nemec et al., 2011).

3 | CLINICAL SYNDROMES AND GENETICS

Although neuromuscular disorders represent the most frequent cause

of syndromes with AMC (Bayram et al., 2016; Beecroft et al., 2018;

Darin et al., 2002), disorders affecting the central nervous system are at

least as numerous in terms of pathophysiological mechanisms involved

and genes implied and vary tremendously among each other from a

phenotypical point of view. Interestingly and making the diagnostic pro-

cedure even more complex, brain anomalies and intellectual disabilities

can be found associated with some neuromuscular diseases with AMC.

Here, we want to emphasize the most frequent causes and clinical man-

ifestations of AMC with CNS involvement with the aim to guide the

diagnosis and proper management (Figure 1, Figure 2).

Some extrinsic causes in CNS-linked AMC have been identified,

especially congenital infections. Today the most frequent viral infec-

tion causing AMC and CNS anomalies is maternal Zika virus infection
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during pregnancy (C Lage et al, 2019; Carvalho et al., 2019). Up to

30% of all newborns present with AMC, with bilateral or unilateral

hip, knee, hand and/or feet involvement. Microcephaly is constantly

associated in these cases. Congenital infections by other viruses, such

as the cytomegalovirus (Perlman & Argyle, 1992), varicella zoster virus

(Huang, Lin, Chiu, & Hung, 2001), and rubella virus (Hall & Reed,

1982) have also been reported but seem to be very rare in terms of

number of affected patients.

As for chromosomal aberrations, by far the most frequent cause

associated with AMC is trisomy 18 or Edward syndrome (Hoff, Loane,

Gilhus, Rasmussen, & Daltveit, 2011). Multiples joint contractures

occur as either club feet or rocker-bottom feet, with clenched fists

and overriding fingers, with therefore predominantly distal joint

involvement. The diagnosis should be suspected if there are cardiac

and to a lesser extend brain malformations, as well as associated

growth restriction, and be confirmed by leucocyte karyotype or CGH

F IGURE 1 Schematic illustration of the main

entities of AMC with central nervous system

involvement according to the associated

anatomical structures involved and the presence

of hypertonia and/ or hypotonia

F IGURE 2 Proposition of a diagnostic aid for patients with AMC and suspected central nervous system involvement
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array. More than 90% of all cases are straight forward trisomies,

whereas mosaicism and translocations or aneuploidies involving chro-

mosome 18 constitute the remaining causes (Rosa, Rosa, Zen,

Graziadio, & Paskulin, 2013). Other chromosomal aberrations include

trisomies 13 and 21, recurrent translocations of chromosome 9q and

8, and microdeletions especially involving 5q23 (Ansari et al., 2014;

Hoff et al., 2011; Riccardi, 1977; Zelante, Notarangelo, Croce,

Piemontese, & Gasparini, 1994).

The occurrence of AMC seems to be a very rare event in Prader–

Willi syndrome and has per se only been described in two patients (Bigi

et al., 2008; Denizot, Boscher, Le Vaillant, Rozé, & Gras Le Guen, 2004).

Isolated adducted thumbs have more frequently been described though

(Klinge, Scott, & de Sousa, 2001; Oiglane-Shlik et al., 2006) or isolated

small hollow feet with malpositioned toes (L'Herminé et al., 2003). The

occurrence of diminished movement in late second or third trimester

may explain why joint contractures do not appear more frequently in

PWS (Gross, Rabinowitz, Gross-Tsur, Hirsch, & Eldar-Geva, 2015;

Insoft, Hurvitz, Estrella, & Krishnamoorthy, 1999; Oiglane-Shlik

et al., 2006).

Congenital myotonic dystrophy is another frequent cause of fetal

hypo- or akinesia presenting usually at birth with respiratory insuffi-

ciency, severe generalized hypotonia, facial diplegia and diminished

deep tendon reflexes without fasciculations. The diagnosis is often

suspected because of a family history of classic myotonic dystrophy

and/or typical clinical signs in the mother (facial appearance, myotonia,

neuropsychological signs) and prenatal polyhydramnios. Of note, myo-

tonia is usually not evident in the newborn or child, but should be

searched for in the mother (Roig, Balliu, Navarro, Brugera, & Losada,

1994). Joint contractures regularly involve the feet (club feet, pes

equinus, pes planovalgus), but may also be present at multiple joint

levels such as the hips, knees, shoulders and elbows, even without distal

limb contractures (González de Dios et al., 1999; Martinello, Piazza,

Pastorello, Angelini, & Trevisan, 1999; Schilling, Forst, Forst, & Fujak,

2013). Up to 20% of patients with congenital myotonic dystrophies

have been reported with AMC (Schilling et al., 2013). Imaging findings

on brain MRI are not specific but the diagnosis is readily done by molec-

ular genetic analysis looking for a pathological CTG expansion in the

DMPK gene.

Recently germline mutations in genes encoding essential compo-

nents of the nodes of Ranvier and paranodes have been associated with

severe peripheral and central axoglial diseases presenting with hyp-

okinesia and arthrogryposis: CNTNAP1 (Laquérriere et al., 2014;

Lakhani et al., 2017), CNTN1 (Compton et al., 2008), GLDN (Maluenda

et al., 2016; Wambach et al., 2017), and LGI4 (Xue et al., 2017).

CNTNAP1 mutations have been documented in patients with periph-

eral nerve hypomyelination and central leucodystrophy, with or without

AMC. Structural brain anomalies have been observed: brain atrophy,

corpus callosum dysgenesis, and ventricular dilation (Table 1). Only one

consanguineous family has been described so far with a homozygous

pathogenic variant in CNTN1. Detailed investigations of the CNS were

not possible due to the severe phenotype and respiratory insufficiency

and early death. There was no response to external stimuli which could

be interpreted as CNS involvement. Nevertheless CNTN1 is known to

be implicated in neurogenesis during cortical development and in the

peripheral nervous system (PNS) alike (Bizzoca et al., 2012; Falk,

Bonnon, Girault, & Faivre-Sarrailh, 2002). LGI4 mutations have only

been identified in nine patients from four families (Xue et al., 2017).

PNS involvement was evident but no structural brain anomalies were

seen in MRI imaging in one surviving patient, who had also global devel-

opmental delay. Gliomedin, encoded by GLDN was initially found in

patients with a lethal congenital contracture phenotype (Maluenda

et al., 2016). More recently, patients surviving past the neonatal period

have been published (Wambach et al., 2017). No brain anomalies in two

surviving patients could be found on MRI but they presented both with

either borderline intellectual functioning in late adolescence (17 years)

or delayed language development at 2 years. Both proximal and distal

joints were involved, but frequently with extended knees, and predomi-

nant lower limb involvement.

CNS involvement in congenital muscular dystrophies is associated

with secondary alpha-dystroglycanopathies with a very wide range of

phenotypic presentations, ranging from the most severe form as

Walker–Warburg syndrome (absence of psychomotor acquisitions,

severe eye, brain, brain stem involvement with cobblestone

lissencephaly, and pontocerebellar hypoplasia), via the less severe

muscle-eye-brain disease (pachygyria, polymicrogyria, PCH), to interme-

diate phenotypes with mild or rare eye and variable CNS anomalies

(Sparks et al, 2012; Romero et al, 2018). Joint contractures appear in

the most severely affected patients (Astrea et al., 2018; Fukuyama,

Osawa, & Suzuki, 1981) (Table 1).

AMC is a clinical finding in pontocerebellar hypoplasia (PCH) type

1 where there is spinal cord involvement and in the more severe form

of pontocerebellar hypoplasia PCH4, respectively linked to TSEN54,

EXOSC3, RARS2, VRK1, and TSEN54 pathogenic variants (Eggens,

Barth, & Baas, 2014 Genereviews; Rudnik-Schöneborn et al., 2013).

More recently, PCH9 due to AMPD2 and PCH12 due to COASY

mutations have been identified. Patients with these types of PCH also

present with multiples contractures at birth possibly linked to either

peripheral hypertonia or spinal cord involvement (van Dijk et al.,

2018; Kortüm et al., 2018; Table 1).

Peripheral and even central hypertonia has also been observed in

what we called “channelopathies.” These are due to either homozy-

gous or compound heterozygous loss of function mutations of the

sodium dependent glycine transporter 1 encoded by SLC6A9, or het-

erozygous gain of function mutations of the sodium leak channel non-

selective (NALCN) gene (Kurolap et al, 2016; Chong et al, 2015;

Aoyagi et al, 2015). The phenotype due to NALCN mutations has

been referred to as CLIFHADD syndrome (congenital contractures of

the limbs and face, hypotonia, and developmental delay).

Mutations in some genes controlling the human cortical develop-

ment have also been associated with AMC: KIF5C (Poirier et al, 2013),

DYNC1H1 (Das et al, 2018), TUBB2B (Laquérriere et al, 2016) in case

of lissencephaly, FLNA (Lah et al, 2016) and NEDDL4 (Elbracht et al,

2018) with periventricular heterotopia, and PI4KA (Pagnamenta et al,

2015) and BICD2 (Laquérriere et al., 2014; Ravenscroft et al, 2016)

with polymicrogyria. No abnormal brain or spinal malformations have

been documented in patients with TRIP4 mutations, but six out of
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eight presented with learning difficulties (Davignon et al, 2016;

Knierim et al, 2016), and mutations in another subunit of the Activat-

ing Signal Cointegrator 1 complex, ASCC1, have also been docu-

mented in patients with AMC, developmental delay and abnormal

cortical gyration (Knierim et al, 2016; Table 1).

Syndromic forms of AMC and multi-organ involvement are very

often associated with CNS anomalies. Some examples are Pena

Shokeir syndrome/fetal akinesia deformation sequence with intrauter-

ine growth retardation, pulmonary hypoplasia, short gut syndrome,

cryptorchidism, and brain malformations (Adam, Coetzee, & Honey,

2018); Miller Dieker syndrome which may include congenital heart

defect, microcephaly and brain malformations, typically lissencephaly,

renal involvement (cystic or pelvic kidney), cleft palate, duodenal atre-

sia, and more (Köhler et al, 1995); Zellweger syndrome/

Cerebrohepatorenal syndrome, a severe peroxisomal disorder with

involvement of many organ systems (brain, liver, kidneys, but also

eyes, heart, lungs, gut, genitalia, adrenal glands) (Klouwer et al, 2015).

Recently, KIAA1109 variants have been described in a severe disorder

of brain development and arthrogryposis, Alkuraya–Kucinskas syn-

drome, overlapping with Aase Smith syndrome (Gueneau et al, 2018).

X-linked arthrogryposis syndromes are frequently associated with

intellectual disability (Hunter et al., 2015).

Many of the syndromes with AMC, CNS-involvement and multi-

organ involvement may be lethal in the neonatal period. In an epide-

miological study from Finland 1987–2002, a total of 214 cases of

arthrogryposis were identified in live born infants, stillbirths and ter-

minated pregnancies, and lethal arthrogryposis syndromes, especially

LCCS, Lethal Congenital Contracture Syndrome, were found in

141, giving an incidence of just under 1/7,000 (Pakkasjärvi

et al., 2006).

4 | MULTIDICIPLINARY CARE AND

TREATMENT

A multidisciplinary team management is necessary. At best, this should

be carried out totally or in conjunction with a tertiary referral center

because of the rarity of these conditions and the special needs in diag-

nosis and management of these patients. In all individuals with

arthrogryposis, physical therapy, splinting and orthotics, and orthopedic

treatment/surgery are the mainstays of treatment. Early physical ther-

apy to mobilize stiff joints and activate muscle function is important

(Kroksmark, Kimber, Jerre, Beckung, & Tulinius, 2006). Children with

arthrogryposis may have difficulties in mouth opening, sucking, and

swallowing, and may have major feeding problems in infancy. Some

children may need gastric tube feeding. When brain involvement is pre-

sent, seizures are a common problem and epilepsy may need to be

investigated and treated. Problems regarding vision and hearing must

be addressed. Functional evaluation and follow-up is important, both

regarding cognitive development and motor development. In the child

with arthrogryposis and brain involvement/developmental delay, cogni-

tive evaluation by a psychologist should be done at appropriate ages, to

be able to plan adequate schooling and psychosocial support. Motor

development and function should be evaluated and followed by physio-

therapist and occupational therapist in addition to treatment and plan-

ning of appropriate physical aids, training and activities. Involvement of

a speech therapist may be needed for speech and feeding problems, a

dietician may be needed for nutritional problems. The orthopedic sur-

geon and neonatologist/pediatrician will naturally be involved. Genetic

evaluation and investigation is necessary. But other specialists, for

example, cardiologist, ophthalmologist, neurologist, and others may also

need to be involved. Endocrine and/or metabolic problems may be pre-

sent and need treatment.

5 | CONCLUSIONS

There is an extreme diversity in the causes and clinical presentations

of AMC associated with anomalies of the central nervous system.

Often, AMC represents the most severe end of the phenotype related

to a specific gene or cause, which means that AMC is not always a

constant feature in these diseases. Furthermore, and despite their

diversity, the clinical signs and CNS imaging findings most often lack

specificity. At best, some associated signs may either be in favor of or

make less probable one or several disease groups. As a consequence,

and unless we find more robust genotype–phenotype associations,

making a precise diagnosis remains challenging. More and more cau-

ses also imply involvement of both the central and the peripheral ner-

vous systems, for example, DYNC1H1, BICD2, ZC4H2, or MAGEL2.

In some cases, AMC seems to be linked rather to the peripheral ner-

vous system involvement than to the CNS anomalies. Severe forms of

CNS involvement in patients with DYNC1H1 mutations may present

with spastic tetraparesis but without AMC (Poirier et al, 2013),

whereas congenital joint contracture are a frequent finding in severe

forms with peripheral nervous system involvement and presenting as

spinal muscular atrophy lower extremity predominant/ SMALED1

(Harms et al, 2012).The clinician should therefore follow a systematic

clinical and paraclinical evaluation of these patients. These data will

also help in interpreting and confirming the molecular diagnosis on

WES or WGS or CGHarray.

Much still needs to be learned about the causes and possible treat-

ments of these often severe syndromes with arthrogryposis, brain

involvement, intellectual disability and often also other organ involve-

ment. Careful clinical evaluation is essential in investigating the child

with arthrogryposis and brain involvement, as well as targeted investi-

gation of organ systems, blood and urine chemistry, depending on the

clinical signs and symptoms. Whole-genome sequencing is often the

best way to identify the genetic cause when the diagnosis is unclear in

conjunction with a detailed clinical evaluation. Because of the rarity and

the special needs of these children and adults, a multidisciplinary

approach is paramount both in investigation and in management.
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