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Alcohol is a well-established teratogen that can cause variable physical and behavioral effects on the
fetus. The most severe condition in this spectrum of diseases is known as fetal alcohol syndrome (FAS).
The differences in maternal and fetal enzymes, in terms of abundance and efficiency, in addition to
reduced elimination, allow for alcohol to have a prolonged effect on the fetus. This can act as a terato-
gen through numerous methods including reactive oxygen species (generated as by products of
CYP2E1), decreased endogenous antioxidant levels, mitochondrial damage, lipid peroxidation, dis-
rupted neuronal cell–cell adhesion, placental vasoconstriction, and inhibition of cofactors required for
fetal growth and development. More recently, alcohol has also been shown to have epigenetic effects.
Increased fetal exposure to alcohol and sustained alcohol intake during any trimester of pregnancy is
associated with an increased risk of FAS. Other risk factors include genetic influences, maternal charac-
teristics, for example, lower socioeconomic statuses and smoking, and paternal chronic alcohol use.
The treatment options for FAS have recently started to be explored although none are currently
approved clinically. These include prenatal antioxidant administration food supplements, folic acid,
choline, neuroactive peptides, and neurotrophic growth factors. Tackling the wider impacts of FAS,
such as comorbidities, and the family system have been shown to improve the quality of life of FAS
patients. This review aimed to focus on the pathogenesis, especially mechanisms of alcohol teratogenic-
ity, and risks of developing FAS. Recent developments in potential management strategies, including
prenatal interventions, are discussed.
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FETAL ALCOHOL SYNDROME (FAS) was first for-
mally termed in 1973. Jones and colleagues (1973)

described a group of characteristic features seen in 8 children
born to chronic alcoholics: growth deficiency, defined as
pre-/postnatal height or weight below the 10th percentile,
and central nervous system (CNS) damage (Hoyme et al.,
2005), and 3 craniofacial abnormalities are used in diagnosis
(National Center on Birth Defects and Developmental Dis-
abilities at the Centers for Disease Control and Prevention,
National Task Force on Fetal Alcohol Syndrome and Fetal
Alcohol Effect, 2004).

Estimates of FAS incidence vary considerably, reported in
Canada (Farag, 2014) and the United States as 0.5 to 3/1,000
live births (Goh et al., 2008). This is largely due to the vari-
able physical and behavioral effects of alcohol on the fetus,

leading to a scale of disorders named fetal alcohol spectrum
disorders (FASD) (Bertrand et al., 2005; Sokol et al., 2003).
This umbrella term identifies the “range of outcomes from
gestational alcohol exposure” (Riley et al., 2011, p. 76) from
alcohol-related birth defects (ARBDs), which are hard to
diagnose, to FAS.

This review aimed to focus on the pathogenesis, especially
mechanisms of alcohol teratogenicity, and risks of develop-
ing FAS. Recent developments in potential management
strategies, concentrating on prenatal interventions, will also
be discussed.

PATHOGENESIS

Alcohol has been a well-established teratogen for many
years (Ornoy and Ergaz, 2010). In 1968, a common pattern
of birth defects was seen in 127 children born to alcoholic
women in France. Both the Institute of Medicine (Stratton
et al., 1996) and Washington criteria (Astley and Clarren,
2000) require evidence of gestational alcohol exposure to
diagnose FAS. In the United Kingdom, the Royal College of
Obstetricians and Gynaecologists (Royal College of Obste-
tricians and Gynaecologists, 2008) and the National Institute
of Clinical Excellence (National Institute for Health and
Care Excellence, 2008) both advise against drinking alcohol
during pregnancy. Such recommendations have been
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established much longer with the U.S. Surgeon General also
advising against consuming alcohol during pregnancy in
1981 (Food and Drug Administration, 1981).

Alcohol and the Placenta

Both animal and clinical studies have shown that ethanol
(EtOH) diffuses through the placenta and distributes rapidly
into the fetal compartment (Brien et al., 1983, 1985; Idan-
paan-Heikkila et al., 1972) where EtOH also has a slower
elimination rate (3 to 4% of maternal rate; Heller and Burd,
2014)—accumulating in the amniotic fluid (Brien et al.,
1983). This reservoir causes greater fetal exposure to EtOH
and is compounded by fetal swallowing, caused by the fetal
kidneys excreting xenobiotics into the amniotic fluid, which
the fetus then swallows (Morgan, 1997; Underwood et al.,
2005).
Oxidative and nonoxidative processes govern regular alco-

hol metabolism (Agarwal, 2001). Cytosolic alcohol dehydro-
genase (ADH) mediates the major, and hepatic CYP2E1 the
minor, biotransformation of EtOH to acetaldehyde (Gemma
et al., 2007). The CYP2E1 pathway normally accounts for
only 10% of EtOHmetabolism but becomes more significant
during ingestion of higher alcohol concentrations, due to
ADH saturation (Howard et al., 2003). This is explained by
the enzyme kinetics—the KM for ADH is 4.5 mg/dl (Tran
et al., 2007) compared to 74 mg/dl for CYP2E1 (Lands,
1998). Therefore, once blood alcohol concentrations (BAC)
exceed 4.5 mg/dl, EtOH follows saturation (zero order) elim-
ination kinetics by ADH and therefore favors metabolism by
CYP2E1 (Tran et al., 2007; Wagner et al., 1976).
The situation in the fetus is different. The placenta has

metabolic functionality due to enzymatic expression, particu-
larly in the first trimester (when the liver is developing) (Myl-
lynen et al., 2005). Here, CYP2E1 is the major metabolizing
enzyme (Cummings and Kavlock, 2004), because CYP2E1 is
induced by alcohol and EtOH has a higher affinity for pla-
cental CYP2E1 than ADH (Rasheed et al., 1997). The fetal
liver contains CYP2E1 earlier in gestation (16 weeks) (Hines
andMcCarver, 2002) compared to ADH (26 weeks) (Arfsten
et al., 2004). Significant levels of CYP2E1 activity and
mRNA have also been found in fetal brain tissue between 45
and 113 days’ gestation (Brzezinski et al., 1999).
Alcohol therefore has a prolonged effect on the fetus due

to amniotic accumulation, reduced concentrations of fetal
metabolic enzymes (CYP2E1 levels remain relatively low
throughout pregnancy, gradually increasing to a maximum
of 30 to 40% of adult hepatic levels 1 year postdelivery; Zel-
ner and Koren, 2013), and reduced elimination.

Mechanisms of Alcohol Teratogenicity

There are many different proposed mechanisms of alcohol
teratogenicity. Such putative mechanisms are illustrated in
an earlier review by Goodlett and colleagues (2005). EtOH
can compromise endogenous antioxidant capacity, for

example, by decreasing glutathione peroxidase levels, or gen-
erate free radicals as by products of its CYP2E1 metabolism
(Ornoy and Ergaz, 2010). The presence of CYP2E1 in brain
tissue is significant as it overlaps with the start of organogen-
esis (days 50 to 60) (Brzezinski et al., 1999; Zelner and
Koren, 2013). When CYP2E1 oxidizes EtOH, it generates a
hydroxyethyl or superoxide radical, which target polyunsatu-
rated fatty acids side chains in brain tissue membranes. These
lipid peroxidative processes may damage fetal brain tissue
during organogenesis, manifesting as CNS dysfunction after
delivery (Gemma et al., 2007).
Kay and colleagues (2006) showed markers of oxidative

stress (nitrotyrosine and 4-hyroxy-2-nonenal) were present in
trophoblasts and stroma, after perfusing placental villous tis-
sues with EtOH. This was contradicted by another study
(Signore et al., 2008) showing no increase in urinary eicosa-
noid markers of oxidative stress between pregnant drinkers
and abstainers. However, here, only 29 pregnant drinkers
were enrolled, of which only 1 had a child diagnosed with
FAS. Furthermore, the presence of eicosanoid markers local-
ized to the placenta, where the oxidative stress is likely to
occur, was not investigated.
Free radicals and reactive oxygen species (ROS) may

result in cellular damage in the fetal brain by inducing
uncontrolled apoptosis (Cohen-Kerem and Koren, 2003;
Guerri et al., 1994). Animal trials showed EtOH increased
components of the intrinsic apoptotic pathway (cytochrome
c and capsase 3) (Ramachandran et al., 2001) and in vitro
studies demonstrated apoptosis following cellular
(Ramachandran et al., 2001) and mitochondrial (de La
Monte and Wands, 2001) DNA damage. This is summarized
in Fig. 1.
Applying this to FAS, it has been suggested that its char-

acteristic facial morphology is linked to the apoptotic effects
of alcohol on cranial neural crest cells (Cartwright and
Smith, 1995a,b). The neuropsychiatric effects of FAS may be
explained by EtOH favoring apoptosis of serotonergic neu-
rons in mice (Sari and Zhou, 2004). Clearly, animal studies
have a limited translatable potential to humans, especially
when concerning fetal development. However, functional
imaging of children with FAS has confirmed lower levels of
serotonin in the cortex and increased dopamine binding in
the basal ganglia (Riikonen et al., 2005), suggesting the same
apoptotic effects are observed in humans. However, other
studies have shown that this observation may be a result of
different mechanisms, such as serotonin transporter alter-
ations (Zafar et al., 2000).
It is important to note that the functional imaging was

conducted on only 12 children with FAS (Riikonen et al.,
2005) reducing the validity of the conclusions. Furthermore,
all children had attention-deficit/hyperkinetic disorder
(ADHD) making it unclear as to whether the reduced effects
of serotonin and/or dopamine at the synaptic level are more
related to a diagnosis of ADHD or FAS. Future studies
involving children exclusively with FAS are required to
establish an independent relationship.
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EtOH also disrupts neuronal cell–cell adhesion (Pruett
et al., 2013) by increasing alpha- and beta-laminins 1, beta-
integrins 3 and 5, and secreted phosphoprotein-1 and sarco-
glycan epsilon expression (observed as increased neurosphere
sizes). Several studies have linked the importance of these
molecules in normal brain development (Minana et al.,
2000; Vangipuram et al., 2008) and other neurodevelopmen-
tal disorders such as microcephaly and mental retardation
(Charness et al., 1994; Minana et al., 2000; Wilkemeyer
et al., 1999). Neurosphere usage brings limitations to the
study, as their variable formation leads to differences in com-
position. They contain cells at multiple stages of differentia-
tion, which makes it harder to pinpoint the most vulnerable
time of alcohol-induced effects on cell adhesion molecules.

Other proposed mechanisms include the transport inhibi-
tion of critical cofactors necessary for fetal growth and devel-
opment, such as biotin (Schenker et al., 1993) and vitamin
B6 (Schenker et al., 1992). Such theories on impaired placen-
tal transfer of essential nutrients have been suggested since
the 1980s (Randall, 1987). EtOH also causes rapid placental
vasoconstriction (Acevedo et al., 2001; Burd et al., 2003),
possibly leading to the growth retardation seen in FAS
through impaired oxygen and nutrient fetal delivery (Siler-
Khodr et al., 2000; West et al., 1994). This occurs via oxida-
tive stress decreasing nitric oxide (a known vasodilator)
availability (Kay et al., 2000), or by dysregulating the throm-
boxane (vasoconstrictor)–prostacyclin (vasodilator) balance
(Burd et al., 2003; Siler-Khodr et al., 2000).

More recently, pre- and postnatal alcohol exposure has
been shown to cause a significant increase in DNA methyl-
transferase activity (Ponomarev, 2013) without affecting his-
tone deacetylase activity (Perkins et al., 2013). These
epigenetic changes can impact the brain structure and func-
tion for the remainder of the organism’s life (Nestler, 2014;
Ungerer et al., 2013). EtOH can also disrupt intercellular
communication necessary for trophoblast growth and

cellular differentiation—important steps in fetal develop-
ment. Interleukins 6 and 13 are specifically involved in neu-
roepithelial/radial glial cell renewal (Deverman and
Patterson, 2009) and are significantly reduced following alco-
hol exposure (Roberson et al., 2012) leading to potential
adverse effects on CNS development.

FACTORS INCREASING RISK OF FAS DEVELOPMENT

The risk of developing FAS is related to timing and
amount of alcohol consumption (dose-dependent) (Abel and
Hannigan, 1995), as well as other factors. BAC is the most
relevant tool when assessing risk as binge drinking, produc-
ing the highest BAC, which carries the highest risk of fetal
damage (Livy et al., 2003; Maier and West, 2001; Pierce and
West, 1986). This is backed up by studies showing popula-
tions with higher binge-drinking rates, having a greater FAS
to partial FAS ratio, such as South Africa (May and
Gossage, 2011).

A recent trial looked at different variables concerning
maternal alcohol consumption (May et al., 2013). Greater
numbers of drinking days per week and sustained drinking
throughout all trimesters increase the risk of having a child
with FAS. The first trimester is the most vulnerable time per-
iod with a 12-times increased risk. However, the study was
based in South Africa, where binge drinking is a known cul-
tural norm, perhaps making it unreasonable to extrapolate
these conclusions to other populations. Additionally, large
standard error overlaps in analysis demonstrate large mater-
nal drinking variance in the FAS group, meaning it is likely
that other factors also contribute to the increased risk of
FAS development.

There is a potential genetic link with FAS, as alcohol is
known to affect multiple genetic loci (Johnson et al., 2006).
This is compounded in pregnancy as alterations in maternal
loci can influence gene expression of the developing fetus and

Fig. 1. Summary of ethanol (EtOH)-induced mechanisms of central nervous system (CNS) dysfunction. (A) Shows the indirect pathway for EtOH-
induced oxidative stress with an overall reduction in glutathione peroxidase activity (an endogenous antioxidant). (B) Shows the direct pathway for EtOH-
induced oxidative stress with peroxidation of lipids, nucleic acids, and proteins through free radicals and reactive oxygen species (ROS) generated as
byproducts of alcohol metabolism by CYP2E1. Free radicals include hydroxyethyl and hydroxyl groups. (C) Other ways in which EtOH affects cells lead-
ing to damage to the fetus culminating in uncontrolled apoptosis via cell and mitochondrial damage and cytochrome c and caspase 3.
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the fetal environment, for example, via maternal hormones
(Mead and Sarkar, 2014). Genes from the ADH family have
also been investigated. One study demonstrated the absence
of ADH1B*3 allele to be protective for FAS (Stoler et al.,
2002), while 2 others showed its presence to be protective
(Jacobson et al., 2006; McCarver et al., 1997). Building on
this, nonsynonymous variants at the ADH1B locus
(ADH1B*2 and ADH1B*3) have been shown to have a mild
protective effect by various case–control and cohort studies
across South African (Viljoen et al., 2001) and European
populations (Zuccolo et al., 2009). Genetic influences may
also tie directly in with teratogenesis. Many global gene
expression studies after in utero alcohol exposure showed
key genes being either up- or down-regulated to the detri-
ment of functional pathways involved in cell proliferation,
differentiation (Hard et al., 2005), and signaling (Green
et al., 2007). At this stage, such studies are limited to mouse
models and utilize varying experimental designs making it
difficult to draw valid comparisons between the studies.
Interestingly, altering paternal gene expression can also

influence fetal susceptibility to FAS. Paternal chronic alcohol
use demonstrated a correlation with demethylation of nor-
mally hypermethylated sperm DNA-imprinted regions.
Transmission of these epigenetic alterations in fertilization
may alter “critical gene expression dosages required for nor-
mal prenatal development,” thereby increasing the risk of
FAS (Ouko et al., 2009, p. 1615). Importantly, the study
enrolled only 16 males, reducing the diversity of the genetic
pool sampled, which is especially relevant in this genetic
study. Caution must be applied when extrapolating these
results to the population. Furthermore, drinking patterns
were self-reported and therefore may be under reported due
to the social stigma attached to drinking heavily.
Various maternal characteristics also influence FAS risk

(May and Gossage, 2011). A smaller body profile (height,
weight, and body mass index [BMI]) was associated with an
increased incidence of FAS. However, the pooling of these
results from independent studies in different countries may
not be valid due to differences in methodology and protocol.
Additionally, a poor nutritional status (especially riboflavin,
calcium, and zinc deficiencies; Keen et al., 2010) increases
FAS risk for reasons other than their effect on BMI. A lower
socioeconomic status and smoking are also more common in
mothers of FAS children (May and Gossage, 2011).
Therefore, many factors are seen to influence incidences of

FAS. Therein lie the limitations of such studies. Differences
in body size, genetic polymorphisms, and paternal alcohol
consumption can never be fully measured and controlled,
leading to each trial having multiple confounding factors
that can skew results and conclusions.

TREATMENT

Clearly, the most effective method of FAS prevention is to
stop maternal alcohol consumption during pregnancy; how-
ever, considering current incidence rates, this seems largely

ineffective thus far. In 2011/2012, 40 to 52% of women were
reported to drink alcohol during pregnancy in the United
Kingdom (Nykjaer et al., 2014) and 52.5% in the United
States with 17.2% bingeing (4+ drinks/occasion) (CDC,
2012). This does not, however, advocate the discontinuation
of programs used to educate mothers on the dangers of
drinking during pregnancy.
Prenatal methods to reverse or prevent alcohol’s terato-

genicity mechanisms are being explored although none are
currently approved for clinical use. Many trials have exam-
ined the effects of antioxidants on alcohol-exposed fetuses
(Cohen-Kerem and Koren, 2003; Joya et al., 2014). For
example, vitamins C (Peng et al., 2005) and E (Heaton et al.,
2000; Wentzel et al., 2006), resveratrol (Kumar et al., 2011;
Yuan et al., 2013), astaxanthin (Zheng et al., 2014), and cur-
cumin (Tiwari and Chopra, 2013) have been administered to
cell or animal models and shown to counter EtOH-induced
oxidative stress. Treating women with antioxidants as food
supplements may also help reverse nutritional deficiencies
commonly seen in FAS mothers (Cohen-Kerem and Koren,
2003).
Future research should focus on the exact mechanism of

antioxidant action as vitamin C effects were observed as a
reduction in hydrogen peroxide and malondialdehyde, which
are not representative of all ROS involved in EtOH terato-
genicity (Peng et al., 2005). Additionally, not all studies have
found a beneficial effect. High-dose vitamin C and E given
throughout gestation have potential adverse effects such as
low birth weight (Boskovic et al., 2005; Goh et al., 2007),
not explained by variables such as maternal age. However,
another trial showed that modified vitamin E promoted cell
survival at much lower concentrations than natural vitamin
E (Siler-Marsiglio et al., 2005).
Other supplements, such as folic acid, L-glutamine, boric

acid, and choline, can also reduce the severity of EtOH-
induced toxicity (Eskes, 1997; Scholl and Johnson, 2000;
Yanaguita et al., 2008). Several studies using guinea pigs and
mice showed the beneficial effects of folic acid including
restoration of normal embryogenesis, preventing alcohol-
induced intrauterine growth restriction (Han et al., 2012)
and reducing the effects of EtOH-mediated oxidative stress
(Cano et al., 2001). When administered alongside selenium
in rats, there was also an improved balance among oxidative
enzymes (Ojeda et al., 2009). Maternal ovine L-glutamine
supplements were found to prevent alcohol-induced growth
restriction on developing fetuses, while increasing amino acid
availability (Sawant et al., 2015). Boric acid acted to reduce
oxidative stress in prenatally alcohol-exposed rats (Sogut
et al., 2015). Zinc has also been shown to have positive
effects in reducing physical abnormalities when administered
at the time of EtOH exposure in mice (Carey et al., 2003).
Choline has been shown to reduce the severity of certain

neurobehavioral events and increases brain weight in animal
models (Thomas et al., 2009, 2010). However, this finding
was collected from litters with 11 or more pups and thus may
over represent larger litters, where there is more competition
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for prenatal nutritional factors. A recent double-blind pla-
cebo-controlled clinical trial showed postnatal choline given
to children with FASD aged between 2.5 and 5 years was
well tolerated but had mixed effects on memory recall and
other measures of early learning (Wozniak et al., 2015). This
was, however, a pilot study. Perhaps future work could focus
on a narrower age range and earlier intervention.

Recently, the use of neuroprotective peptides to influence
cytokines and chemokines involved in developmental cellular
signaling has been studied. The EtOH-induced reduction of
important signaling molecules, interleukins 6 and 13, was
reversed with neuroprotective peptides NAPVSIPQ and
SALLRSIPA (Roberson et al., 2012). They also reduced
inhibition on L1 cell adhesion. Neurotrophic and growth fac-
tor administration also have similar effects, with insulin-like,
nerve, and heparin-binding EGF-like growth factors (respec-
tively, IGF-1, NGF, and HB-EGF), reducing EtOH-induced
adverse effects on insulin-dependent signaling pathways
(Barclay et al., 2005; Rahman et al., 1994) and apoptosis.
This is perhaps due to high HB-EGF expression during early
development, which helps to promote cell survival (Das
et al., 1994; Kilburn et al., 2006; Leach et al., 1999). Omega-
3 and betaine have also shown to reduce the neurodegenera-
tion triggered by EtOH in rat brains (Ol et al., 2016).

Thus far, the potential treatment options have focused on
reversing the mechanisms of alcohol teratogenicity.

Regenerative method, such as stem cell use, is a newer avenue
of exploration (Muralidharan et al., 2013). A recent paper
used fetal rat brain-derived neuronal stem cells (NSCs),
which reversed the actions of EtOH-induced reductions of
GABAergic interneurons (Fig. 2) (Shirasaka et al., 2012).
The rats were either treated with EtOH or an equal volume
of physiological saline as a control, for 4 days every 12 hours
between days 10 and 13 of gestation. Rats were then injected
intravenously with a NSC suspension at postnatal day 45, or
received saline alone. Importantly, rats receiving the NSC
injection correlated with a reversed impairment of memory/
cognitive function and social behavior seen in FAS.

Another paper showed similar outcomes where behavioral
abnormalities in fetal alcohol-affected rats were reduced with
NSC treatment (Yoshinaga et al., 2007). However, the ethi-
cal concerns related to harvesting fetal brain-derived NSCs
may require the need for other potential sources such as
induced pluripotent stem cells or postmortem human CNS
tissue. The possible risks of teratoma formation, immune
rejection, and inappropriate stem cell migration (Master
et al., 2007) along with limited information about transplan-
tation of stem cells clinically, and their long-term effects, sug-
gest more clinical trials are required surrounding these issues
(Poulos et al., 2014).

Further research into the GABAA receptor has shown a
flavonoid compound, dihydromyricetin (DHM), which

Fig. 2. Decreased number of parvalbumin (PV)-positive GABA interneurons and their area-dependent reverses by neuronal stem cell (NSC) treat-
ment. (A) PV-positive cells were counted in coronal sections from control, fetal alcohol spectrum disorder (FASD) and FASD+NSC rats. (B) The amount
of PV-positive cells significantly decreased in anterior cingulate cortex, hippocampus, and amygdala in FASD rats (*p < 0.05). NSC treatment reversed
these reductions in anterior cingulate cortex and amygdala (#p < 0.05) but not in the hippocampus. Scale bars: 100 lm. Taken with permission from T
Shirasaka (co-author) (Shirasaka et al., 2012).
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selectively antagonizes the effects of EtOH at the GABAA

receptor with few side effects. Administration of DHM with
EtOH in pregnant rats was found to prevent all the physio-
logical and behavioral changes observed in rats that had
been exposed to alcohol in utero (Liang et al., 2014).
There is a wide range of secondary disabilities associated

with FAS (Jacobson and Jacobson, 2002; Mukherjee et al.,
2006), which are summarized in Table 1. Managing such dis-
abilities does not treat FAS directly but can improve the
patient’s quality of life—a key part of management. Stabiliz-
ing the family system (Olson et al., 2009), improving execu-
tive function via the Alert program for self-regulation (Nash
et al., 2015; Soh et al., 2015), and using existing treatment
plans for common comorbidities seen in FAS, such as
ADHD (Doig et al., 2008), are examples of how this can be
performed. However, FAS-ADHD differs slightly to
ADHD; thus, the response to treatment is variable (Pruett
et al., 2013). Therefore, there is a need for novel pharmaco-
logical agents, such as fenofibrate, to reduce hyperactivity in
FAS (Marche et al., 2011).

LIMITATIONS AND FUTUREWORK

A consistent limitation found in all research was the lack
of clinical evidence. In vitro and animal studies produce lim-
ited translatable data when studying cellular mechanisms of
teratogenicity. This is because in humans, simultaneous
chemical reactions and genetics can influence the final out-
come of the mechanisms in question.
Furthermore, those clinical trials that were conducted gen-

erally had low “n” numbers, limiting their ability to detect an
increased risk for specific adverse outcomes. It is clearly
unethical to administer alcohol to pregnant women and
therefore unreasonable to expect gold standard randomized
controlled trials to replace the retrospective case reports
commonly used.
Recently, however, the use of zebra fish is coming to the

fore. The benefits of hundreds of optically clear eggs laid

externally enable accurate analysis of cellular processes, help-
ing the assessment of the impacts of EtOH on developmental
embryological sequences (Barclay et al., 2005). Importantly,
there is good conservation of major developmental signaling
pathways including neural and craniofacial development—
particularly relevant for FAS (Eberhart et al., 2008; Ingham,
2009). Embryonic alcohol exposure has been shown to
impair zebra fish social behavior due to alcohol-induced dys-
function of the dopamine-controlled reward systems (Fer-
nandes et al., 2015). A recent paper involving zebra fish has
shown that alterations to miRNA miR-9 are related to
EtOH-induced tetralogy. They found that EtOH transiently
inhibited miR-9 and disrupts its interactions with its target
genes (Pappalardo-Carter et al., 2013). However, there has
been an issue surrounding the agreement of tissue EtOH
levels in exposed zebra fish (Barclay et al., 2005).

CONCLUSIONS

The complex interactions of pathogenesis and risk factors
for FAS make the current search for a definitive treatment
tricky. Addressing existing research limitations may prove
beneficial in determining precise mechanisms of alcohol ter-
atogenicity and therefore may help achieve a more effective
treatment for FAS.
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