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ABSTRACT

Background: Cleidocranial dysplasia (CCD) is a genetic disorder with
an autosomal dominant inheritance pattern. CCD characterized by
abnormal clavicles, patent sutures and fontenelles, supernumerary
teeth and short stature. Approximately 60-70% of CCD patients have
mutations in the RUNX2 gene. The RUNX2 gene is an essential tran-
scription factor for chondrocyte maturation, osteoblast differentiation
and bone formation. Runx2 regulates mesenchymal cell proliferation
in sutures and suture closure by inducing the signaling pathways of
the genes of Fgf, Pthlh, hedgehog and Wnt. Material and Methods:
We summarized molecular genetics aspects of CCD. Result:
Approximately 94% of CCD patients have dental anomalies, the most
common of which are supernumerary tooth. Dental anomalies are
not determined solely by gene mutations of RUNX2, but are also
affected by modifier genes, environmental factors, epigenetic factors
and copy number variations. Conclusion: a definite diagnosis of
CCD should include the patient’s clinical history, symptoms and
signs, as well as genetic analyses.
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Introduction

Cleidocranial dysplasia (CCD) is a genetic disorder with an autosomal dominant pattern.

It was first named in 1898 by Marie and Saintion [1]. The frequency of CCD is about

one in one million people [2]. The disorder is caused by mutations in the RUNX2 gene

on chromosome 6p21. The RUNX2 gene is essential for the differentiation of stem cells

into osteoblasts, so mutations may cause defective bone formation. In CCD patients,
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severe abnormalities in bone growth and development have been observed. Diagnosis of

this syndrome often occurs at birth based on chest and skull anomalies, particularly apla-

sia or hypoplasia of clavicles and the patent fontenelles and the genetic testing of the

RUNX2 gene. A multifunctional approach is needed to treat the disease, including oral

and maxillofacial surgery, tooth extraction, orthodontics, prosthesis, and more [3].

In this article, we describe the clinical features of CCD with the study of the structure

and function of RUNX2 gene in bone formation and supernumerary teeth. In addition,

the correlation between phenotype-genotype of RUNX2 mutations in CCD and its asso-

ciation with other syndromes has been investigated.

Clinical and radiological features

Cleidocranial dysplasia (CCD) is associated with severe abnormalities in bone develop-

ment. The main symptoms of the disease include hypoplasia, aplasia or lack of clavicles,

sloping shoulders, open fontenelles, delayed bone formation of the skull, short stature and

supernumerary teeth. Afflicted people with a lack of clavicle can put their shoulders close

together [4]. Dental disorders include supernumerary teeth, maxillary hypoplasia, follicular

cysts in the jaw, delayed tooth eruption, delay in the development of the root of permanent

teeth and delay in the absorption of the roots of deciduous teeth [5,6]. Other characteris-

tics of CCD are hypertelorism, hypoplasia the anterior part of the face, a short nasal

bridge, and narrow thorax. Patients’ intelligence is usually normal, but in some cases, deaf-

ness has been mentioned [7,8]. The presence of anomalies in the clavicle bones has been

considered in several studies as a clinical finding of this syndrome. Complete recognition

of clinical symptoms and differential diagnosis of CCD from other diseases with similar

clinical symptoms is necessary [9]. When the clinician suspects CCD, a skeletal survey and

genetic analysis should be obtained. There are several therapeutic options for CCD. To

address dental problems, extensive and comprehensive dental treatments such as extrac-

tion of teeth, surgery, and orthodontics are necessary to maintain proper mastication [10].

If bone density is less than normal, calcium treatment and vitamin D supplementation

should be initiated for early prevention of osteoporosis in young people. If necessary, an

invasive treatment for recurrent infections of the middle ear and sinus may be needed. If the

skull has a significant structural defect, then risk of injury to the skull is high when hit and

can be protected by surgery and a protective helmet. Clinical manifestations and radiographic

findings are commonly used to diagnose the disease. If the final diagnosis is not possible

based on clinical manifestations and radiographic findings, genetic analysis is required [8].

RUNX genes

RUNX proteins are important transcription factors that contribute to a wide range of bio-

logic processes. The RUNX1, RUNX2, and RUNX3 heterodimeric proteins are all three

family members of the Runt-related transcription factors that have a DNA-binding a sub-

unit and a non-DNA-binding b subunit. These proteins have a domain Runt with 128

amino acids. Each RUNX gene has two isoforms of the N-terminal. In general, invertebrates

have a RUNX gene that is similar to the RUNX3 gene in the vertebrate, but insects like

Drosophila melanogaster have four RUNX genes. The vertebrates have three genes [11].
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Thirty percent of patients with acute myeloid leukemia (AML) and ten percent of

patients with myelodysplasia (MDS) have mutations in the RUNX1 gene [12]. RUNX1

plays an important role in hematopoietic cells. Hereditary mutation in RUNX1 causes

familial platelet disorder with predisposition to myeloid malignancy (FPD/AML) with

autosomal dominate inheritance pattern [13]. RUNX2 plays an important role in the

development of the skeletal system and the morphogenesis of other organs, such as thy-

roid and breast. The role of RUNX2 is increasingly recognized in various cancers,

including thyroid, prostate, lung and breast cancer. Many studies have shown that the

deregulation of RUNX2 is associated with the progression and metastasis of various

tumors [14–17]. RUNX3 is a tumor suppressor gene that plays a role in various bio-

logical processes, including development of the cranial and dorsal root ganglia, gastro-

intestinal tract and T-cell differentiation. Mutations in RUNX3 have been reported in

various diseases including colon and gastric cancers, glioma, melanoma, prostate cancer,

renal cell carcinoma and neural disorders [18].

The structure and function of the RUNX2 gene

The CDD disease is caused by mutations in a central binding sequence factor (CBFa1)

gene, which was later renamed RUNX2. This gene is a transcription factor and an

essential regulator of osteoblast differentiation and bone formation. Mutations may

result in defective bone formation. Studies have shown that bone formation does not

occur correctly if there is homozygous deletion of this gene in animals. As the knockout

mice for the RUNX2-/- gene lack osteoblasts, and thus completely lack bone, heterozy-

gous mice (RUNX21/-) showed abnormalities similar to CCD. In humans, heterozygous

mutations in the RUNX2 gene lead cleidocranial dysplasia [19,20].

The RUNX2 gene on 6p21 has 8 exons spanning 222.76 kb and contains two distinct

domains. The exons 1, 2, and 3 encode a DNA-binding domain called runt and exons

4,5,6,7 encode the activation and repression domains for transcription. All mutations

which lead to the loss of function (haploinsufficiency) in the gene RUNX2 cause clei-

docranial dysplasia (OMIM #119600) [11,14].

Transcription of the Runx2 gene is regulated by two promoters P1 (distal promoter)

and P2 (proximal promoter), which result in two isoforms of mRNAs that differ in

region 5
0

. Type I RUNX2 isoforms start are encoded by P2 promoter and type 2

RUNX2 isoform are encoded by P1 promoter [21]. Type I and II RUNX2 isoforms,

starting with the N-terminal amino acid sequence MRIPVD and MASNSL respectively.

The most abundant isoform of RUNX2 gene in osteoblasts is the type II isoform. Type

I Runx2 is expressed extensively in T cells. The expression of this isoform of RUNX2

gene is also observed in osteoblasts and chondrocytes [22]. Type I and type II isoforms

differ only in a small number of amino acids in the N-terminal. The enhancer sequence

upstream of the P1 promoter regulates the expression of the RUNX2 gene in chondro-

cytes and osteoblasts, but both P2 promoter and enhancers regulate RUNX2 expression

in thyroid and breast cancers [17,23].

Function of P1 and P2 promoters results in the production of RUNX2 mRNA with

two untranslated regions (50 -UTR1 and 50 -UTR2). Both UTR1 and UTR2 are long and

have a complex secondary structure which can potentially inhibit the translation based
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on “CAP”. However, both regions contain IRES elements that regulate expression of

RUNX2 in different cellular conditions. For example, IRES elements in the UTR1 and

UTR2 regions increase RUNX2 translation under “Genotoxic” stress caused by mitomy-

cin C during osteoblastic maturation [21]. The most important induction modification

after translating is by phosphorylation. This phosphorylation is essential for RUNX2

activity that can be stimulated by several signaling pathways [24].

There are different signaling pathways that can activate the Runx2 transcription

factor. Runx2 regulates various stages of mesenchymal stem cells (MSC) development,

including commitment, proliferation, differentiation and mineralization, transforming

MSC cells into mature osteocytes. These pathways, after binding their ligands, activate

the mediators, which subsequently enhance the expression or activation of Runx2 and

ultimately regulate the expression of genes associated with osteogenesis processes

(Figure 1). Therefore, Runx2 plays a pivotal role in the formation, development and

proper growth of bones and teeth. The mutation in this gene disrupts these signaling

pathways, which can explain the cause of skeletal and dental anomalies observed in

Figure 1. There are many signaling pathways involved in the development of skeletal bone forma-
tion. Several morphogenic growth factors such as transforming growth factor-beta (TGFbs), bone mor-
phogenetic proteins (BMPs), fibroblast growth factors (FGFs), and Wnt ligand can induce these
signaling pathways,modulate transcription factors and gene expression. Runx2 is a pivotal mediator of
a variety of these signal pathways and is one of the most important transcription factors in the osteo-
genic process. Runx2, directly or indirectly, regulates the expression of a set of genes whose transcrip-
tion induces osteoblast and chondrocyte differentiation during osteogenesis [27]. Some of these
genes include, COL10A1, SPP1, Ihh, IBSP, MMP13, BGLAP2, and VEGFA, each may be expressed during
distinct stages of differentiation. The Wnt pathway is one of major regulatory pathways involved in
the regulation of Runx2 and active Runx2 via the stabilization and accumulation of b-catenin, which
then moves to the nucleus and induces gene expression [28]. Besides the skeleton, Runx2 may play
critical roles during tooth initiation, morphogenesis, and dental cell differentiation. Runx2 regulates
the expression of molecules in mesenchymal tissues as well; acting reciprocally on the dental epithe-
lium to control its growth and differentiation, partly explaining the dental abnormalities found in
patients with cleidocranial dysplasia [29].
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patients with CCD [25–27]. Despite the numerous molecular pathways for the devel-

opment and differentiation of mesenchymal cells into osteocytes, the Wnt/b-catenin

signaling pathway plays an important role in this developmental process. The activa-

tion of the Wnt/b-catenin signaling pathway is carried out by Wnt proteins, which

act as ligands for receptor Frizzled (Fzd) and co-receptor LRP5/6. In the absence of

Wnt proteins or binding of inhibitors of this pathway such as DKK1, the b-catenin

protein is phosphorylated by the GSK3 and CK1 enzymes of the APC, Axin, CK1 and

GSK3 complexes. This phosphorylation leads to the recognition of b-catenin by

b-Trcp and E3 ubiquitin ligase subunit and ultimately causes ubiquitination and pro-

teinaseomal degradation of b-catenin protein. In the absence of phosphorylation, the

stability and concentration of b-catenin in the cytoplasm increases, which can then

migrate to the nucleus, and form a complex with TCF/LEF transcription factor

family members. This complex leads to the expression of target genes, including

RUNX2 [28,29].

RUNX2 gene plays an important role in osteoblast differentiation. The expression of

Indian hedgehog (Ihh) in chondrocytes induces expression of RUNX2 in mesenchymal

stem cells during the development of the endochondral bone. Then, Runx2, by inhibit-

ing the differentiation of the mesenchymal stem cells into chondrocytes and adipo-

cytes, induces them to osteoblast progenitors. In knockout mice for Ihh-/-, osteoblasts

and expression of Runx2 in perichondrium are completely absent [30]. Sp7, Runx2

and canonical Wnt signaling cause osteoblast progenitors differentiation into imma-

ture osteoblasts. Expression of Sp7 is regulated by Runx2. Osteoblast progenitors have

the ability to differentiate into chondrocytes that are inhibited by canonical Wnt sig-

naling and Sp7 (27). Notch signaling inhibits Runx2 through the Hes and Hey tran-

scriptional inhibitors, as a result, with the proliferation of mesenchymal cells, their

differentiation into osteoblasts are inhibited [31]. Runx2 expression decreases during

osteoblasts maturation [32]. In the process of endochondral ossification, Runx2 plays

an important role in the chondrocytes maturation. Sox5, Sox6 and Sox9 control the

differentiation of mesenchymal cells into immature chondrocytes [27]. Overexpression

of RUNX2 in transgenic mice increased the chondrocyte maturation and endochondral

bone formation. While the expression of dominant-negative Runx2 in mice inhibited

chondrocyte maturation and delayed endochondral ossification [33]. Therefore,

Runx2 plays an important role in the development of chondrocytes from immature

chondrocytes.

Animal models

In 1997, two researchers generated a mouse model for the mutated locus of RUNX2

(Cbfa1). Mice with homozygous mutations in RUNX2 died after a birth without breath-

ing. The examination of their skeletal system revealed a complete absence of osteogen-

esis. Although osteogenesis was completely blocked throughout the body, but the

development of the cartilage was almost normal. Therefore, RUNX2 is essential for mat-

uration of osteoblasts in both endochondral and intramembranous ossification.

Heterozygous mice (Cbfa11/-) showed skeletal abnormalities similar to cleidocranial

dysplasia in humans. The heterozygote embryos of the mice had open fontenelles,
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hypoplasia of clavicles and nasal bones, and delayed ossification of nasal bones and cal-

varial bones. Therefore, the two researchers suggested that the RUNX2 gene plays an

important role in osteogenesis and osteoblast differentiation [19,20].

Reducing Runx2 by 30% in mice causes a defect similar to CCD in the development

of the clavicles and calvaria [34]. It is unclear what mechanism Runx2 regulates suture

closure and calvarial development. In one study, the posterior frontal (PF) and sagittal

(SAG) sutures were compared between wild type and Runx21/– mice [35]. Runx21/–

mice lacked cartilage formation in PF suture. The suture closure in PF and SAG was

completely disrupted. In this study, the decrease in mesenchymal cell proliferation and

the expression of signaling pathways genes of Fgf, Pthlh, hedgehog and Wnt in

Runx21/– sutures were observed in comparison with the wild type. The expression of

these genes is directly regulated by Runx2. The ligand or agonist of these genes in

Runx21/– calvariae mice increased the proliferation of mesenchymal cells in sutures and

bone formation. By contrast, the use of their antagonists inhibited the proliferation of

mesenchymal cells in sutures and bone formation. Thus, Runx2 regulates mesenchymal

cell proliferation in sutures and suture closure by inducing the signaling pathways of

the genes of Fgf, Pthlh, hedgehog and Wnt.

Supernumerary teeth in cleidocranial dysplasia are related to permanent teeth.

Probably because the mice are monophyodont, they did not have extra teeth in the

CCD heterozygote model [36]. In a study in 2005, Runx2 knockout mouse, the develop-

ment of molars in the late stage of the bud, especially for lower molars, was inhibited.

The expression of the genes of the enamel knot marker, including P21, FGF4, EDAR,

and BMP4, decreased in the lower molars but were normal in the upper molars. In

Runx2 knockout mice, the expression of sonic hedgehog (Shh) was completely absent in

the lower molars, while poor expression was observed in the upper molars. Therefore,

RUNX2 is essential for shh signaling in the lower but not upper molars [37].

Wnt/b-catenin signaling plays an important role in the onset and development of the

tooth and the differentiation of dental cells. Wnt ligands in the early morphogenesis of

the teeth are expressed in the epithelium of the tooth [38]. The mandatory activation of

Wnt signaling in the oral epithelium has led to the formation of extra teeth in the

embryonic stage and maturation of the mice. WHile the high expression of Dkk1 (an

inhibitor of Wnt) in the oral epithelium has led to the inhibition of the development of

the tooth in the early bud stage [39,40]. During the development of the tooth, the

Runx2 function is regulated by Fgfs, however, the bone development study showed that

Wnt/b-catenin signaling positively regulates Runx2 [41,42]. In a 2018 study by J€arvinen

E et al., the effect of Wnt/b-catenin signal modulation on mouse models and ex vivo

cultures were investigated on sequential formation of molar teeth. They indicated that

increasing the activity of Wnt/b-catenin in dental mesenchyme inhibited the develop-

ment of posterior molars and sequential tooth formation, whereas the reduction of mes-

enchymal Wnt/b-catenin signaling was associated with continuous tooth development.

In addition, their results showed that heterozygous mutations in the AXIN2 and

RUNX2 genes, which cause hypodontia and hyperdontia respectively, resulted from the

modulation of the Wnt/b-catenin signal in the mesenchyme of the tooth. Runx2 tran-

scription factor inhibits mesenchyme of Wnt/b-catenin inhibitors, including Dkk1 and

Axin2 (29).
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RUNX2 mutations and genotype–phenotype correlation

Approximately 60-70% of CCD patients have missense, nonsense, deletions and inser-

tions mutations in the RUNX2 gene. Most of them occur in the Runt domain, which

prevent the binding of this transcription factor (Runx2) to DNA [43,44]. To date, more

than 184 mutations have been reported for RUNX2 on the human gene mutation data-

base (HGMD), the most common of these mutations are missense/nonsense (Figure 2).

Due to the widely variable expressivity in CCD patients, there is a weak correlation

between genotype and phenotype. For instance, Dan Ma [43] reviewed 183 CCD patients

with missense and 25 CCD patients with nonsense mutations in the Runt domain of

RUNX2, and compared five phenotypic categories, including hypoplastic clavicles, short

stature, delayed closure of sutures or wormian bones, supernumerary teeth, and mid-

face hypoplasia or mandibular hyperplasia. There was no significant difference between

these phenotypes based on missense and nonsense mutations. Then, by comparing the

clinical manifestations in 239 CCD patients based on position of nonsense and missense

mutations in the Runt domain and non-Runt domain regions, there was a significant

mutation rate for supernumerary teeth and mid-face hypoplasia or mandibular hyperpla-

sia in the Runt domain but not the non-Runt domain regions. Therefore, they suggested

the importance of Runt domain in craniofacial and dental development [43]. In another

study, correlation between Runt domain mutations and developmental teeth abnormal-

ities was observed in CCD patients [45]. Therefore, there was no significant relationship

between phenotype type and mutation type in CCD patients, whereas there was correl-

ation between phenotype type with mutation locations in RUNX2 gene. On the whole,

diagnosis of CCD based on clinical and radiographic findings is not a challenge.

However, among members of an affected family, they may show variable manifestations,

such as dental abnormalities and craniofacial dysplasia [43].

Relationship between RUNX2 and others diseases

Although RUNX2 is mainly expressed in osteoblasts, a few studies have shown that

RUNX2 is also expressed in non-skeletal systems [46,47]. Complete recognition of

Figure 2. The percentage of different types of mutations in the RUNX2 gene in CCD: About 45% of
the RUNX2 mutations form Missense /nonsense mutations. Other mutations in this gene are small
deletions (25%), small insertions (13%), gross deletions (10%), splicing (6%), and indels (1%).
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clinical symptoms and differential diagnosis of CCD from other diseases with similar

clinical symptoms is necessary. CCD predominantly affects the skeletal and dental sys-

tem. In one study described a patient with late-onset limb girdle myopathy, an uncom-

mon phenotype in CCD, due to a heterozygous missense mutation (c.G674A, p.R225Q)

in the RUNX2 gene [48]. Therefore, patients with myopathy who have skeletal or dental

abnormalities and facial dysmorphism, in order to avoid misdiagnosis and inappropriate

treatment, in addition to the patient’s clinical history, signs and symptoms, genetic ana-

lysis should be performed. In another study, three CCD patients in three families for

more than three generations were misdiagnosed as rickets. No mutation was detected

for the RUNX2 gene with sanger sequencing, but a reexamination with qPCR and

multiplex ligation-dependent probe amplification (MLPA) revealed a novel deletion in

exons 1-3 of the RUNX2 gene. Because of the similar physical appearance and very low

frequency of CCD, all three patients were reported as rickets and had been treated with

vitamin D for many years [49]. Aplasia or hypoplasia of clavicles and the patent fonte-

nelles are not specific sign to the CCD and may be seen in other syndromes or disor-

ders. Reducing bone mineralization may cause patent sutures and open fontenelles in

disorders like rickets, hypophosphatasia, and osteogenesis imperfecta [4].

However, the abnormal arm and shoulder mobility commonly observed in CCD can

be a symptom of other conditions, particularly Ehlers-Danlos syndrome hypermobility

type (EDS-HT). EDS-HT is characterized by joint laxity with musculoskeletal com-

plaints, soft tissue overuse injury and often semitransparent skin [50], but does not

have additional specific clinical features and cannot be diagnosed through laboratory

tests. Unfortunately, in the patient with EDS-HT no genetic defect has been found [50].

There are no additional specific clinical features or laboratory tests to diagnose EDS-

HT. Bedeschi et al, initially misdiagnosed a child as EDS-HT, while a precise diagnosis

indicated that the child had CCD. CCD was confirmed several years later with genetic

findings. They performed DNA sequencing to confirm this diagnosis, but no point

mutations were detected in RUNX2. They identified a new heterozygous deletion muta-

tion in gene RUNX2 using a MLPA test [51]. Therefore, a definite diagnosis of CCD

should include the patient’s clinical history, symptoms and signs, as well as gen-

etic analyses.

Supernumerary teeth in cleidocranial dysplasia

Human have two teeth series, 20 teeth in the deciduous dentition and 32 teeth in the

permanent dentition. Supernumerary teeth (ST), or hyperdontia are defined as add-

itional teeth to the normal dental components. Supernumerary teeth (ST) are one of the

most common human anomalies [52]. They may occur anywhere in the mandible or in

the maxilla, singly or in multiples, unilaterally or bilaterally, erupted or unerupted. The

etiology of ST is still unknown. They may be associated with a syndrome or non-syn-

drome patients. The prevalence of ST in the general population is 0.2% to 0.8% in the

deciduous dentition and 0.5% to 5.3% in the permanent dentition [52] . The presence

of one, two and multiple ST for non-syndromic cases has been reported to be 76–86%,

12–23%, and 1%, respectively [53]. Multiple supernumerary teeth have been reported in

normal individuals, but most are associated with other disorders or syndromes [52, 54].

8 J. MOTAEI ET AL.



Most ST are isolated cases, but some may be hereditary and associated with some syn-

dromes. In a review article, Lubinsky et al, reports about 8 genetic syndromes with strong

evidence for ST [52]. Syndromes that show supernumerary teeth include cleidocranial

dysplasia, familial adenomatous polyposis, trichorhinophalangeal syndrome type I,

Rubinstein–Taybi syndrome, Nance–Horan syndrome, Opitz BBB/G syndrome, oculofa-

ciocardiodental syndrome and autosomal dominant Robinow syndrome. Several members

of a single kindred in the Kreiborg–Pakistani syndrome (OMIM 614188) and insulin

resistant diabetes mellitus with acanthosis nigricans (OMIM 610549) have been reported

with ST [52,55,56]. Some Mendelian disorder have ST: Fabry disease, Ellis–van Creveld

syndrome, Apert and Crouzon syndromes, Hallermann–Streiff syndrome,

Zimmermann–Laband syndrome and Ehlers–Danlos syndrome [52].

Supernumerary teeth are usually associated with genetic syndromes. Several genes

have been identified, including RUNX2, TRPS1, NHS, APC, and EVC [43]. However,

the etiology of ST is not clear. The most common syndrome associated with super-

numerary tooth is CCD [52], approximately 94% of CCD patients have dental anoma-

lies, including ST. Dental abnormalities in CCD include delayed or failure of eruption of

teeth, especially the permanent teeth, retention of primary teeth, crown and root abnor-

malities, high arched palate, underdevelopment of maxilla, delayed or no mandibular

symphysis ossification, multiple impacted permanent teeth and also multiple super-

numerary teeth [4,57]. Dentin formation (primary and permanent teeth) is normal,

although there are problems in shedding of deciduous teeth and eruption of permanent

teeth [44]. The reasons for delayed or failure eruption of permanent teeth in CCD are

absence of cellular cementum at the root apex, decreased alkaline phosphatase levels and

mechanical obstruction [57,58]. The presence of multiple ST in CCD may cause mech-

anical obstruction and may be a major factor for the impaction of permanent teeth [59].

Most studies indicate that correlation between the genotype-ST is very low. Quack et al

examined unrelated patients with CCD of different ethnic backgrounds, but they were not

able to find significant correlation between genotype-phenotype, although clavicular

anomalies were inevitably present but the number and presence of supernumerary teeth

was highly variable and did not correlate with other phenotypes or the type of mutation

[60]. On the other hand, Yoshida et al were able to find a significant correlation between

short stature and the number of supernumerary teeth [61]. Suda et al reported intrafami-

lial variations in position and number of supernumerary teeth among the three siblings in

CCD patients with an identical mutation in the RUNT-domain of RUNX2 (P210S) [62].

Therefore, position and number of supernumerary teeth are not determined solely by

gene mutations RUNX2, but also determined by epigenetic factors, copy number varia-

tions and the non-genetic factors, such as environmental factors [44,62].

Conclusion

Approximately 60-70% of CCD patients have loss of function or haploinsufficiency

mutations in the RUNX2 gene. The RUNX2 gene is an essential transcription factor for

chondrocyte maturation, osteoblast differentiation and bone formation. Due to the

widely variable expressivity in CCD patients, there is a weak correlation between geno-

type and phenotype. It is unclear how Runx2 regulates suture closure and calvarial
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development. In Runx21/– mice with impaired PF and SAG, there was a decrease in the

proliferation of mesenchymal cells and the expression of signaling pathways genes of

Fgf, Pthlh, hedgehog and Wnt compared to normal mice. Runx2, by inducing the

expression of these signaling pathways genes, regulates the proliferation of mesenchymal

cells in sutures and suture closure. Most supernumerary tooth are isolated cases, but

some may be hereditary or syndromic. Most common syndrome with supernumerary

tooth is CCD. Wnt/b-catenin signaling plays an important role in the development and

differentiation of teeth and also positively regulated Runx2. Runx2 transcription factor

inhibits the expression of Wnt/b-catenin inhibitors in dental mesenchymal cells. Dental

abnormalities may vary among members of a family with the same mutation in

RUNX2. Therefore, dental abnormalities are not determined solely by gene mutations

RUNX2, but also determined by epigenetic factors, copy number variations and the

non-genetic factors, such as environmental factors.
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