ERN-ITHACA Webipar 2025

EUROPEAN REFERENCE NETWORKS Helping patients with rare or low-prevalence complex diseases

ARID1B Associated Coffin-Siris Syndrome Diagnosis and Management

TUESDAY, MARCH 18, 2025 FROM 5PM TO 6.30 PM CEST

Chaired by : André Reis

ITHACA Project Manager Anne Hugon

Welcome – Technical points

- We are please to be numerous > 140 registrations
- Webinar being recorded

Thank you for

- Turn off your microphone and disconnect your camera
- Raise your hand at the time of the questions and discussions
- We will answer the questions sent in the registration form
- A satisfaction survey will be sent to you :
- Webinars # will be available on ITHACA's Website
- <u>https://ern-ithaca.eu/webinars/</u>
- Anne Hugon Project Manager ERN ITHACA anne.hugon@aphp.fr

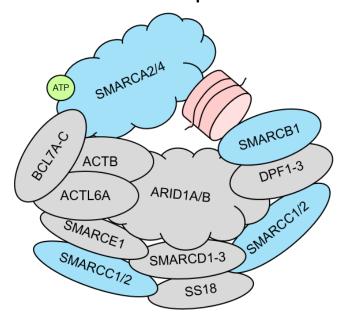
Welcome and Introduction

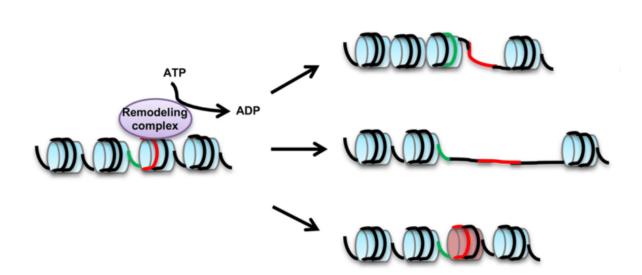
- ARID1B Associated Coffin-Siris Syndrome Diagnosis and Management
- Coffin-Siris syndrome (CSS) is a relatively frequent syndrome with developmental or cognitive delay, classically characterized by small or missing nails and distinctive facial appearance, among several other signs.
- Since the discovery of mutations in *ARID1B*, a component of the BAF chromatin remodelling complex, as the main cause of the syndrome, our knowledge on diagnosis, natural history and management have greatly improved.
- In this webinar we aim to explore these recent developments.

Agenda

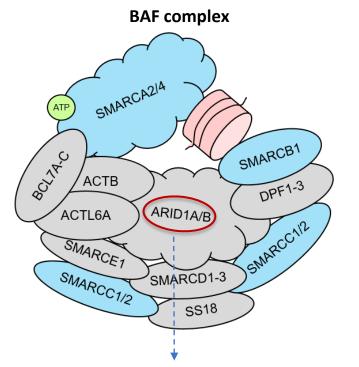
Welcome and Introduction

- André Reis, University Hospital Erlangen, Erlangen, Germany
- Clinical and molecular diagnosis in children
 - Georgia Vasileiou, University Hospital Erlangen, Erlangen, Germany
- ARID1B-related disorder in adults
 - Gijs Santen, Leiden University Medical Center, Leiden, The Netherlands
- CARE4ARID1B
 - Dagmar Wieczorek, Medical Faculty and University Hospital, Düsseldorf, Germany
- The patient's perspective
 - Gal Lazarus, Ph.D., Department of Psychology, The Hebrew University of Jerusalem, Israel
- Discussion time Conclusion with speakers and moderator


Clinical and molecular diagnosis in children


Georgia Vasileiou, Institute of Human Genetics, University Hospital Erlangen, Germany

BAF complex (also known as SWI/SNF complex)

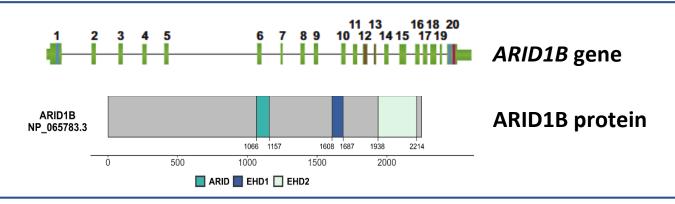

BAF complex

BAFopathies

1% of neurodevelopmental delay cases

Coffin-Siris syndrome (CSS)

ARID1B: 50-83% (CSS 1)


ARID1A: 6% (CSS 2) SMARCB1: 7% (CSS 3) SMARCA4: 7% (CSS 4) SMARCE1: 2% (CSS 5) ARID2: 53 patients (CCS 6) DPF2: 12 patients (CSS 7) SMARCC2: 65 patients (CSS 8) SMARCD1: 7 patients (CCS 11) BICRA: 16 patients (CSS 12)

Hoyer et al. 2012; Santen et al. 2012, 2013; Wieczorek et al. 2013; Tsurusaki et al. 2014; Kosho et al. 2014a; van der Sluijs et al. 2019; Gillentine et al. 2022; Vasko et al., 2021, Valencia et al. 2023

ARID1B

ARID1B (AT-rich interactive domain-containing protein 1B) is located in chromosome 6q25 (20 exons)

3 main domains

✓ ARID: DNA-binding domain

✓ EHD1/EHD2: interact with each other-formation of ARID1A/B homo-/heterodimers

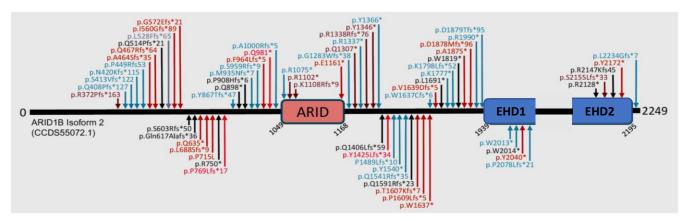
✓ EHD2: interacts with SMARCA4

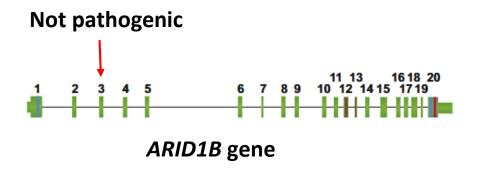
Key stabilizer of the BAF complex

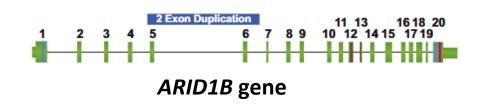
It is expressed in brain and a wide range of tissues

Hurlstone at al., Biochem J, 2002 Bosch et al., Human Genetics, 2024 Hoyer et al., AJHG, 2012

Molecular aspects of CSS 1 (ARID1B-associated CSS)

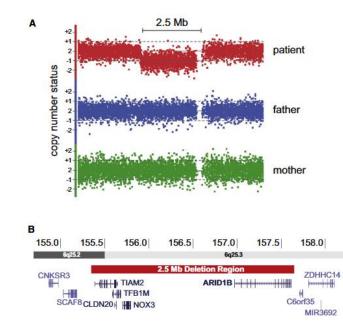

- autosomal dominant disorder
- complete penetrance
- heterozygous mutations/aberrations
- *de novo* mutations/aberrations
 - ✓ recurrence risk <1%
- ✤germline mosaicism
 - ✓ reccurence risk up to 50%
- inherited mutations from mildly affected parents
 - ✓ recurrence risk 50%




Truncating variants

- haploinsufficiency gene
- solution (truncating) variants
- frameshift, nonsense, splice-site
- intragenic deletions/duplications

Modified figure from Sim *et. al.*, Intractable & Rare Diseases Research, 2015 Hoyer et al., AJHG, 2012 Van der Sluijs et al., Genetics in Medicine, 2019

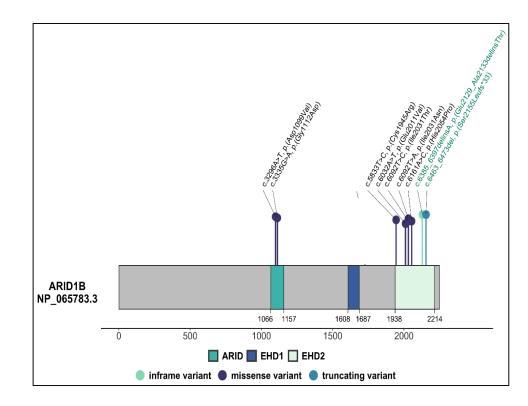


protein degradation

protein degradation

Deletions- structural rearrangements

- whole-gene deletions in 6q25 (0.73- 2.7Mb)
- paracentric inversion-translocations: ARID1B disruption



Hoyer et al., AJHG, 2012 Grochowski *et. al.*, Front Genet., 2021

Non-truncating variants

non-truncating variants (inframe, missense) in ARID and EHD2 domain⁻
 truncating variants not leading to protein degradation (exon 20)

• pathomechanism is loss-of-function

pathogenic

ARID1B-associated phenotype and clinical manifestations

Non-syndromic neurodevelopmental delay (NDD)/intellectual disability (ID)

Genetic testing ensures diagnosis

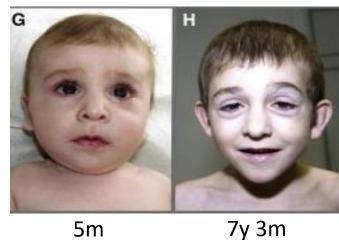
Gene panel testing Exome analysis Genome analysis

CSS: recognisable phenotype

Coarse facial features (>80%)

✓ Thick eyebrows, long eyelashes, wide mouth with thick lips, everted lower lip, broad nose, downslanted palpebral fissures, low-set ears

2y 5m



3y 10m

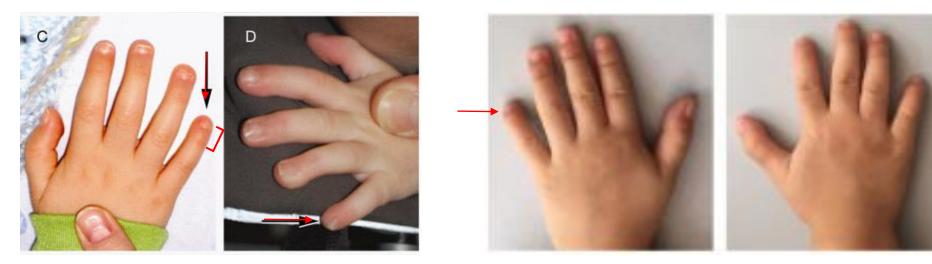
4y 5m

5m

19y

17y

Hoyer et al., AJHG, 2012 Santen et al., Nature Genetics, 2012 Mannino et al., AJMG, 2018

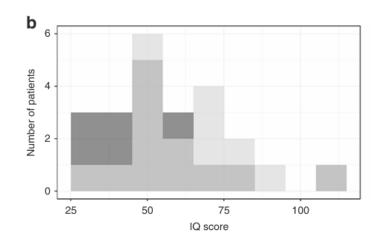

Sparse/thin scalp hair (50-80%)

Mannino et al., AJMG, 2018 Vasko et al., Genes, 2021 Zapata-Aldana et al., Clinical Genetics, 2023 Huang et al., Med Genomics, 2024 Santen et al., Nature Genetics, 2012

Hypoplasia of the 5th toe or fingernail and/or additional digits (60-80%) Short/absent 5th distal phalanx (33-40%)

Lu et al., BMC Medical Genomics, 2021 Mannino et al., AJMG, 2018 Bosch et al., Human Genetics, 2024 Vasko et al., Genes, 2021 Gene Reviews, Coffin-Siris syndrome, 2021

Hypertrichosis (60-86%)



CSS clinical manifestations

variable NDD/ID- almost all individuals (98%)

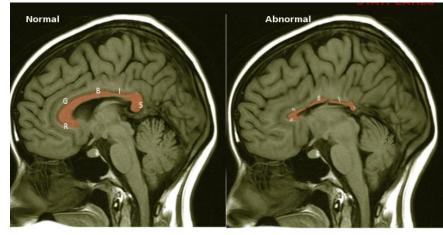
- ✓ 3% borderline-normal intelligence
- ✓ 38% mild/8.6% mild-moderate
- ✓ 22% moderate/17% moderate-severe
- ✓ 10% severe/profound

speech delay (98%)
✓ the majority of individuals
✓ no speech development (25%)

gross and fine motor delay (98%)

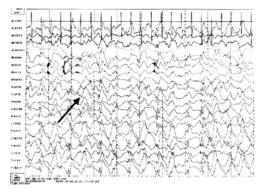
behavioral anomalies (80-85%)

European


- ✓ autistic traits/autism
- ✓ ADHD
- ✓ hyperactivity

Van der Sluijs et al., Genetics in Medicine, 2019 Gene reviews, ARID1B-related disorder, 2019 https://de.wikihow.com

Other neurological anomalies



muscular hypotonia (80%)

brain anomalies

✓ Corpus callosum hypoplasia/agenesis (40-47%)

epilepsy (28%)

- ✓ birth-mid teenage years
- ✓ abnormal EEG (6%)

Van der Sluijs et al., Genetics in Medicine, 2019 Gene reviews, ARID1B-related disorder, 2019 Gene reviews, Corpus Calosum Agenesis, 2023 https://de.wikihow.com

Growth-feeding-infections

growth parameters

 \checkmark birth: normal for the majority

short stature (30%)

- \checkmark growth hormone deficiency
- ✓ underweight rare
- ✓ microcephaly rare

feedings problems (60-70%)

- ✓ birth (70 %)
- ✓ short duration (40%)
- ✓ several years

recurrent infections (57%)

- ✓ upper respiratory-viral
- ✓ otitis media

Van der Sluijs et al., Genetics in Medicine, 2019 Gene reviews, ARID1B-related disorder, 2019 https://de.wikihow.com

Organ system abnormalitiesmultisystem disorder

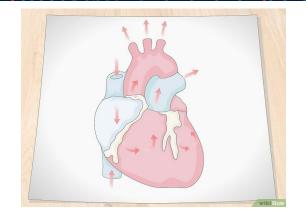
ophthalmologic abnormalities (48%)

- 🗸 myopia
- strabismus
- ✓ hypermetropia
- ✓ astigmatism

hearing loss (20-30%)

musculoskeletal problems

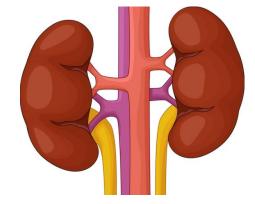
- ✓ delayed bone age (47%)
- ✓ clinodactyly (36%)
- ✓ scoliosis (26%)
- joint laxity
- brachydactyly
- ✓ Pes planus


delayed dentition (45%)

- ✓ primary (44%)
- ✓ permanent (48%)
- ✓ widely spaced teeth

Van der Sluijs et al., Genetics in Medicine, 2019 Gene reviews, ARID1B-related disorder, 2019 Calcus et al., eLife, 2019 <u>https://de.wikihow.com</u> https://bdiplayhouse.com/scoliosis-intervention/

Organ system abnormalities


gastrointestinal problems (48%)

- \checkmark constipation
- ✓ gastrointestinal reflux

congenital heart defects (20%)

- ✓ atrial septal defect
- ✓ ventricular septal defect

renal defects (12%)

- ✓ nephrolithiasis
- ✓ hydronephrotic kidney

urogenital defects

✓ cryptorchidism (44-55%)

Van der Sluijs et al., Genetics in Medicine, 2019 Gene reviews, ARID1B-related disorder, 2019 https://de.wikihow.com Premium Vector | Human kidney cartoon endocrinological abnormalities
 ✓ Hypothyreoidism 2025

Normal Largos Organisation de la composition de

Laryngomalacia (20%)

Genotype-phenotype correlation

loss-of-function (truncating) variants in exon 1 of ARID1B

non-truncating variants in EHD2 and ARID domains of *ARID1B* truncatings variants in exon 20-aberrant transcripts

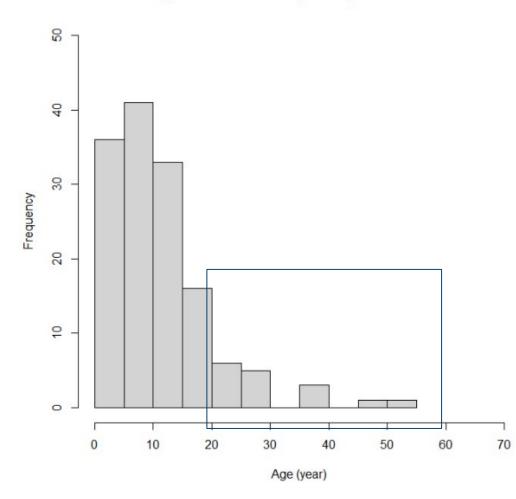
same phenotypic and clinical features with ARID1B truncating variants

ARID1B-related disorder in adults

Gijs Santen, Leiden University Medical Center, Leiden, The Netherlands

ARID1B-related disorder in adults

https://doi.org/10.1016/j.gimo.2024.101873


Prof. Gijs Santen Department of Clinical Genetics LEIDEN UNIVERSITY MEDICAL CENTER Leiden, the Netherlands

ARID1B in adults: a knowledge gap

Age distribution in reported patient cohort

- Small number of adult patients included
- Knowledge representative for the adult population?
 - E.g. seizure frequency?

van der Sluijs et al 2019

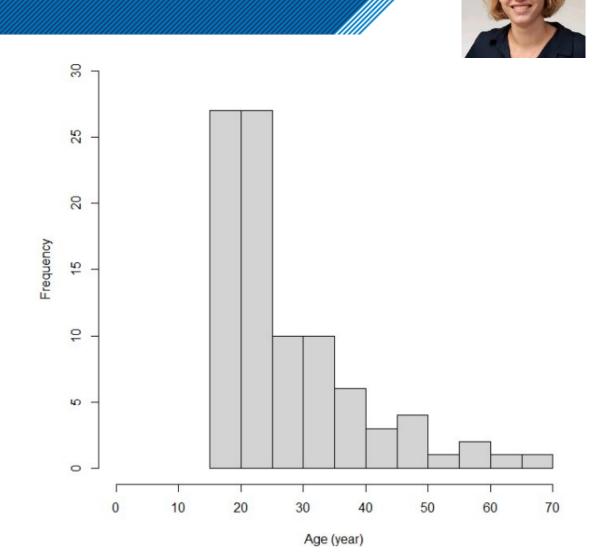
Outline

- Study set-up
- Medical findings
- Self-sustainability
- Exon 1 variants vs other variants

Study set-up

ARID1B in adults: a study

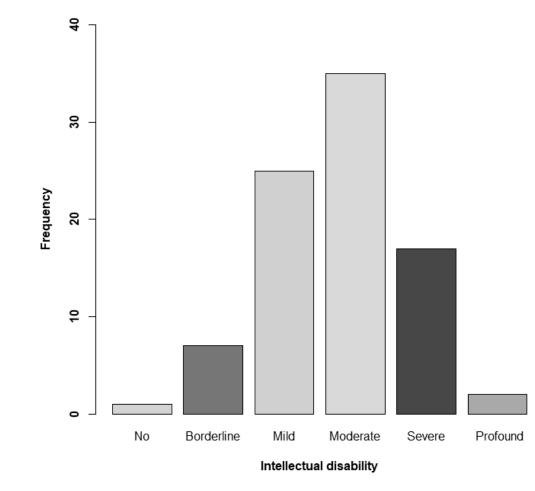
Inclusion criteria

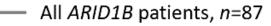

- Pathogenic ARID1B variant
- Aged 18 years or older

Aims:

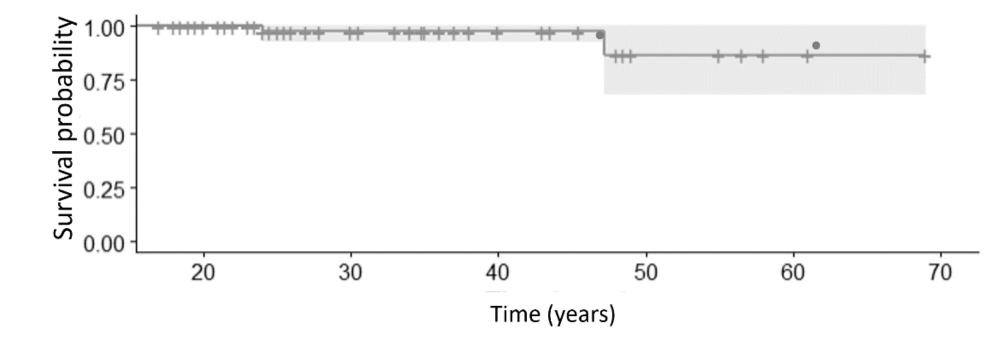
- Phenotyping
- Describe functioning

Cohort:

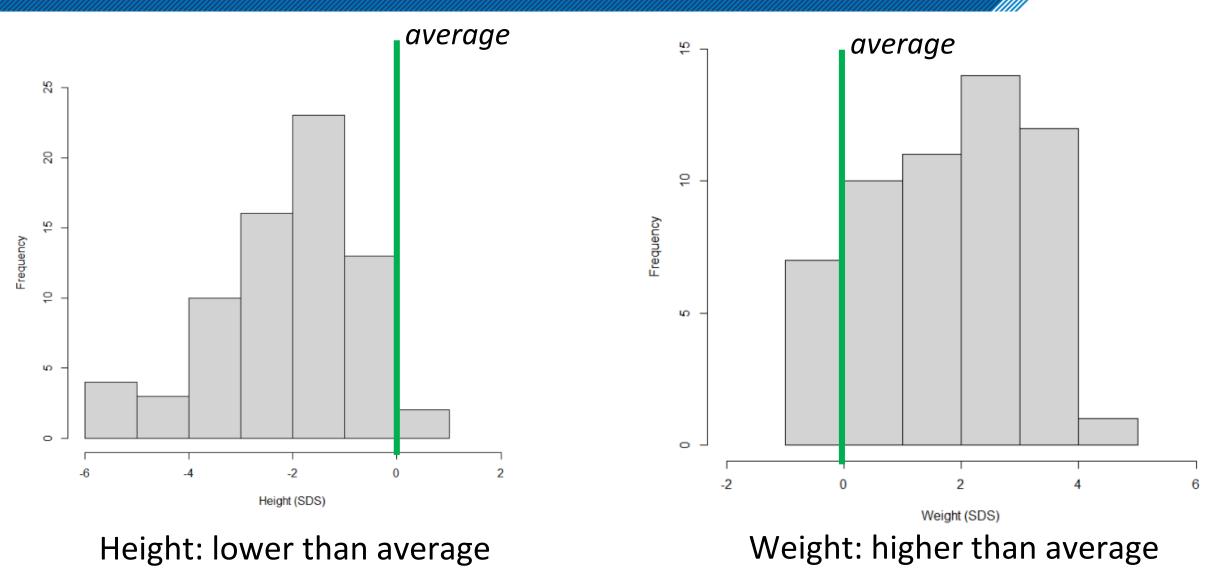

• 87 patients



Medical findings

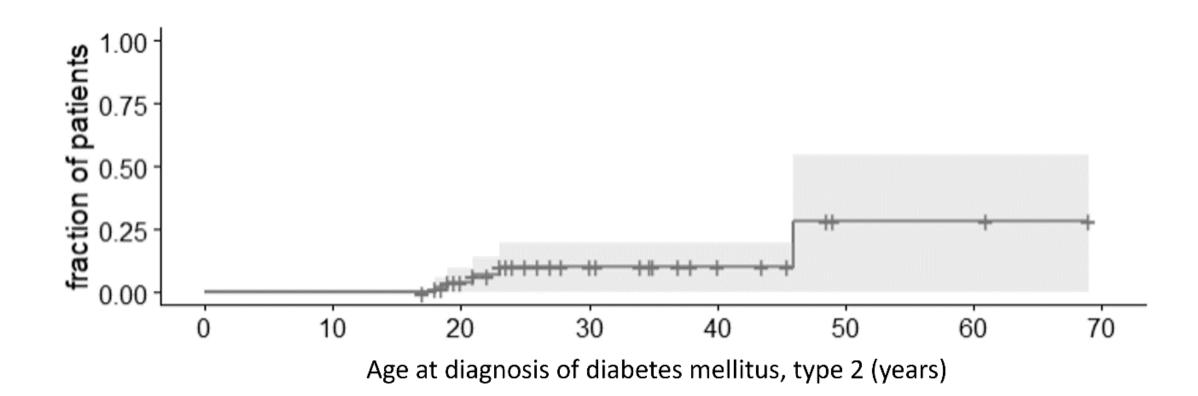

Results: degree of ID

Results: Life expectancy



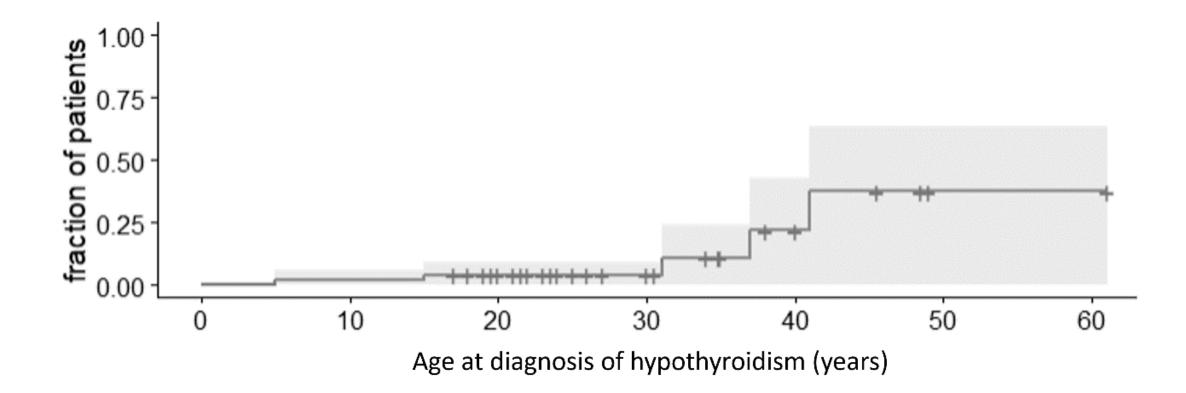
Control population*

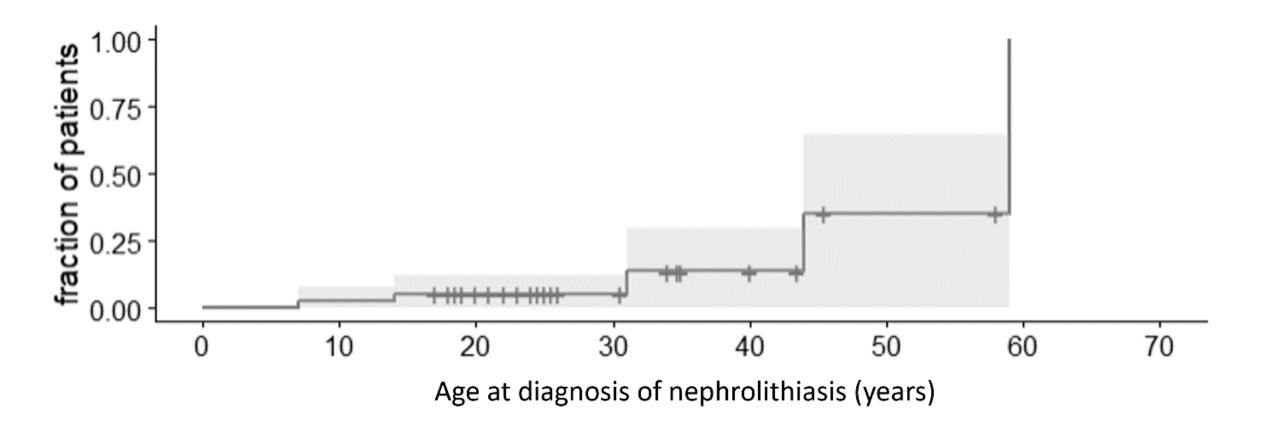
Life expectancy similar to people without an *ARID1B* mutation!

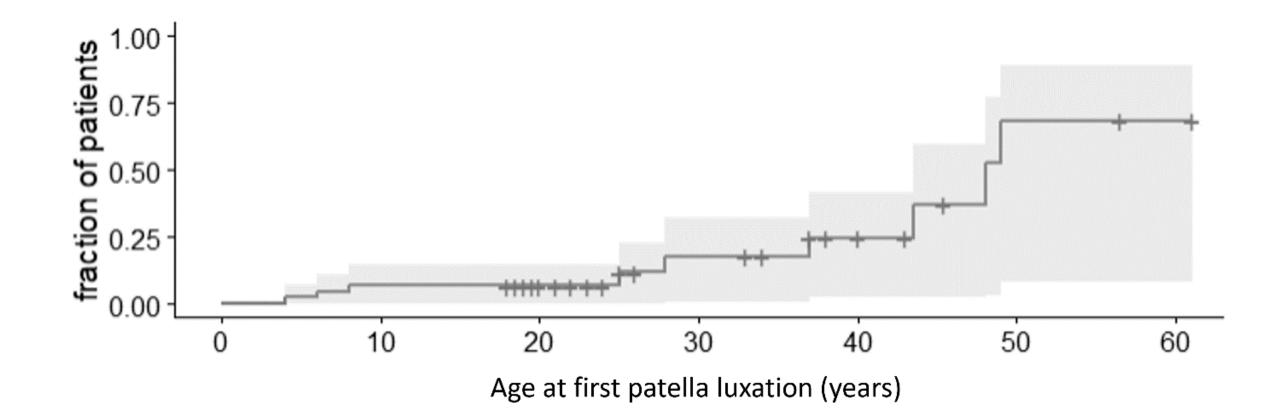

Results: biometry

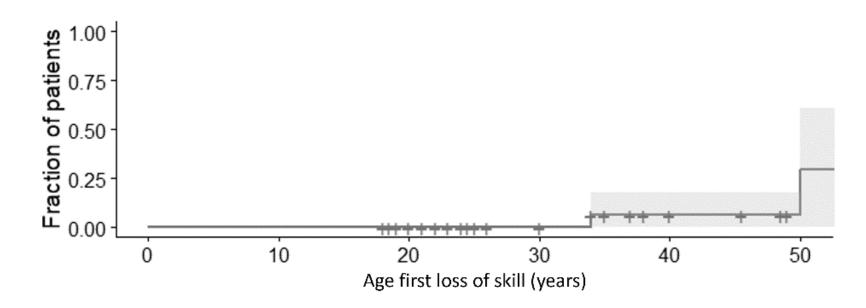
ARID1B-related disorder in adults

35

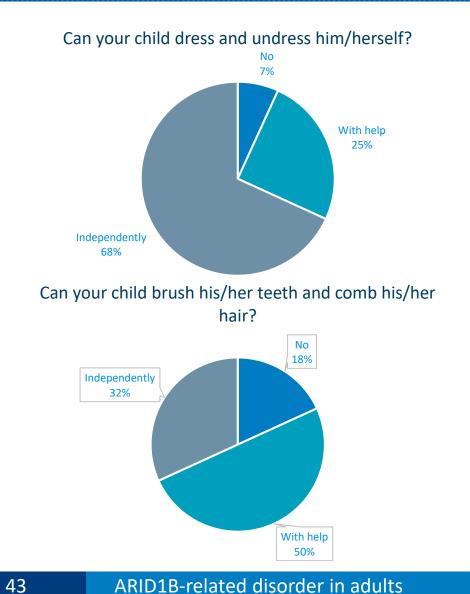

Results: Diabetes Mellitus

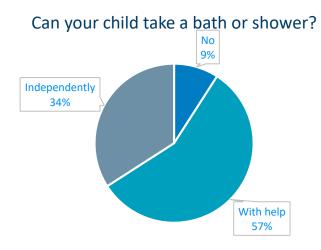

Results: Seizures


Results: Hypothyroidism

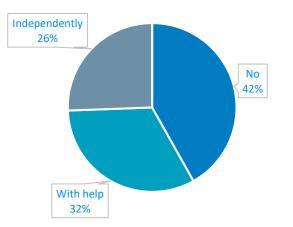

Results: Nephrolithiasis

Results: Patellar luxation

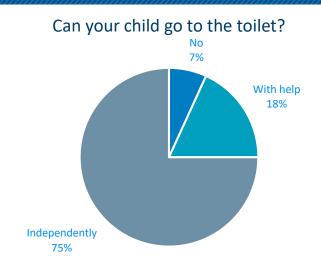

Results: Loss of skills

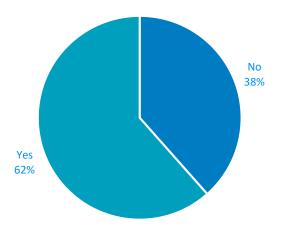


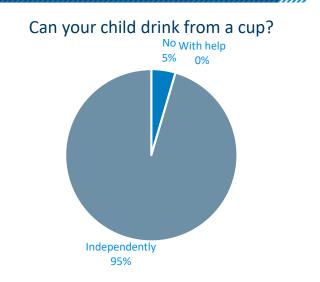
Loss of skills was noted in 25% (16/64) of patients. No specific triggering event was reported. The age of onset was documented in four cases. This age ranged from 31 to 54 years. Loss of motor skills, particularly in walking ability with increased tripping and decreased balance, was the most common (7/16), followed by loss of speech (5/16). Some patients required the use of a wheelchair (5/62).


Self-sustainability

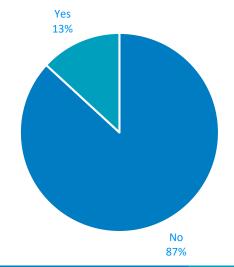
Some examples



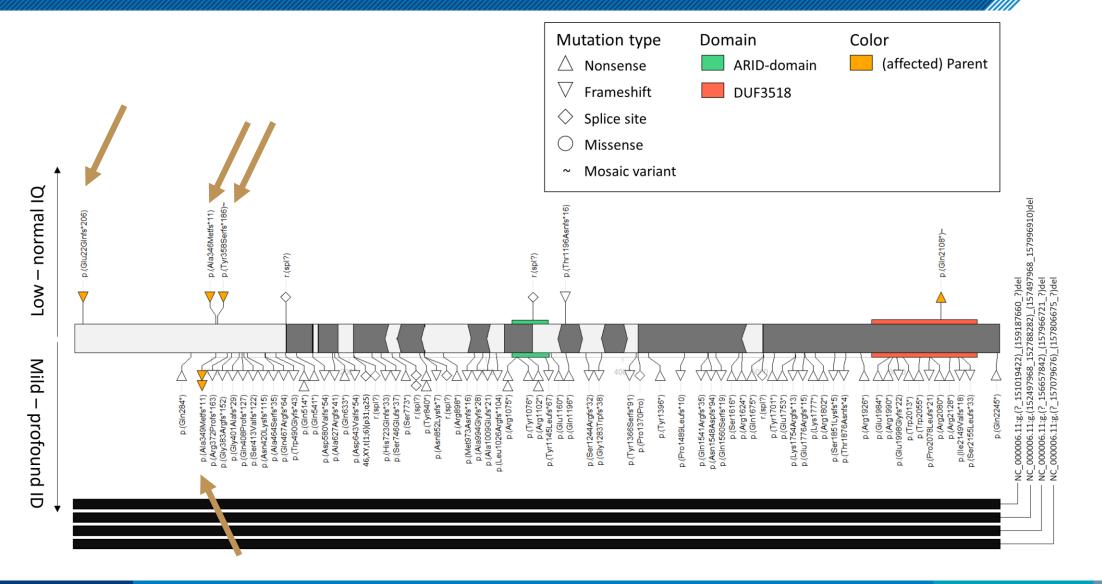

Can your child do the groceries?



Some more examples

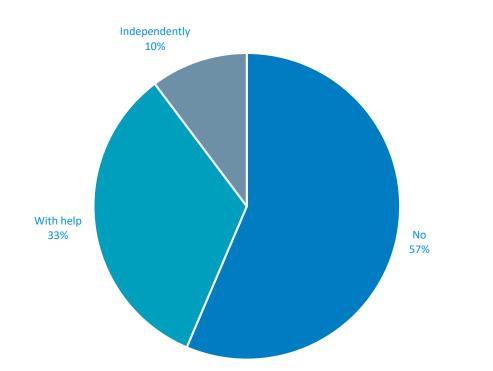


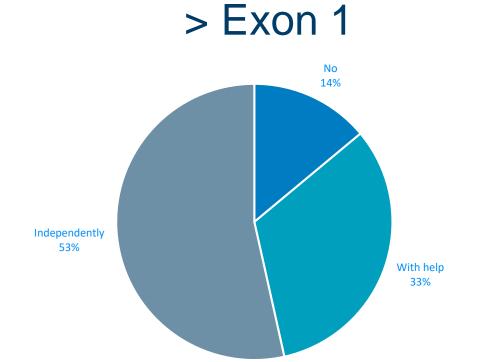
Can your child stay home alone for 30 minutes?

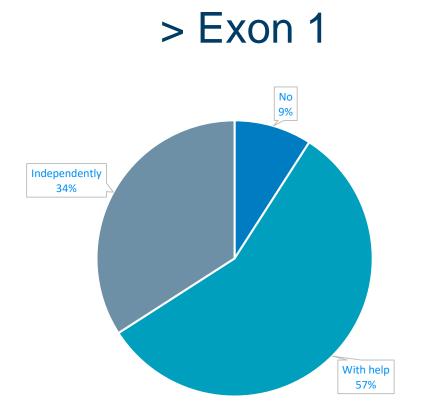

Can your child travel alone by public transport?

44

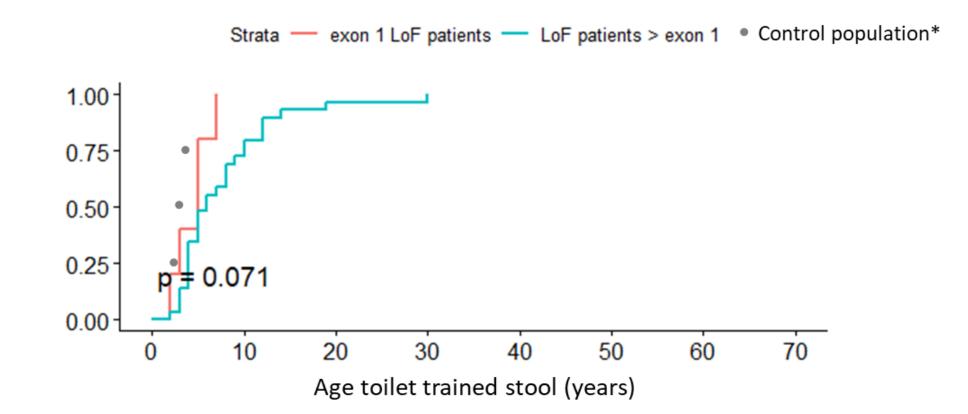
Exon 1 varants in adults


Data from previous work

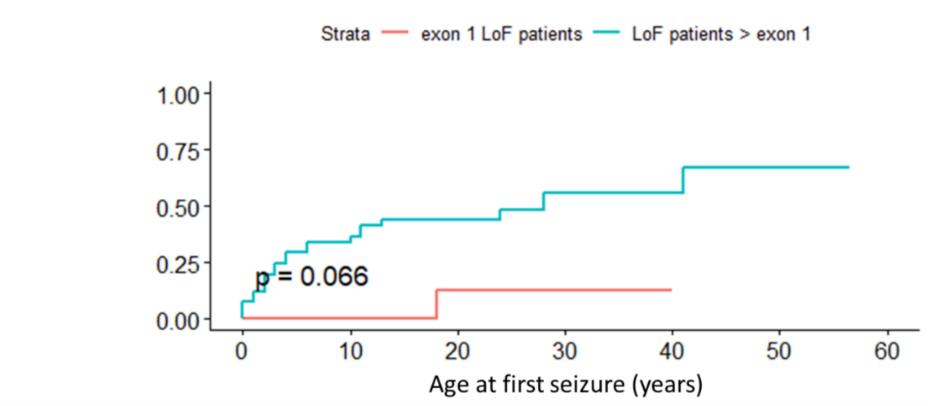

46


Can your child handle money, pay in the store?

> Exon 1



Can your child set and clear the table?


Toilet training (stool)

50

Seizures

fraction of patients

Conclusions

- Shift in medical aspects as patients age
- First glimpse of self-sustainability
- Difference in exon 1 vs > exon 1 confirmed
- Recommendations given (see paper)
- More data needed on loss of skills

Acknowledgements

ARID1B-related disorder in 87 adults: Natural history and self-sustainability

P.J. van der Sluijs¹, M. Gösgens¹, A.J.M. Dingemans², P. Striano^{3,4}, A. Riva^{4,5}, C. Mignot⁶, A. Faudet⁷, G. Vasileiou^{8,9}, M. Walther⁸, S.A. Schrier Vergano^{10,11}, M. Alders¹², F.S. Alkuraya^{13,14}, I. Alorainy¹⁵, H.S. Alsaif^{13,16}, B. Anderlid¹⁷, I. Bache¹⁸, I. van Beek¹², M. Blanluet¹⁹, B.W. van Bon²⁰, T. Brunet^{21,22}, H. Brunner², M.L. Carriero²³, P. Charles⁶, N. Chatron^{24,25}, E. Coccia²⁶, C. Dubourg^{27,28}, R.K. Earl²⁹, E.E. Eichler^{30,31}, L. Faivre^{32,33}, N. Foulds³⁴, C. Graziano³⁵, A.M. Guerrot³⁶, M.O. Hashem¹³, S. Heide⁷, D. Heron⁷, S.E. Hickey^{37,38}, S.M.J. Hopman³⁹, A. Kattentidt-Mouravieva⁴⁰, J. Kerkhof⁴¹, J.S. Klein Wassink-Ruiter⁴², E.C. Kurtz-Nelson^{29,43}, K. Kušíková⁴⁴, M. Kvarnung¹⁷, F. Lecoquierre³⁶, G.S. Leszinski²¹, L. Loberti^{23,45}, P.L. Magoulas⁴⁶, F. Mari²³, I. Maystadt⁴⁷, G. Merla^{48,49}, J.M. Milunsky⁵⁰, S. Moortgat⁴⁷, G. Nicolas³⁶, M.O.' Leary⁵¹, S. Odent^{28,52}, J.R. Ozmore⁵³, K. Parbhoo^{37,54}, R. Pfundt², M. Piccione^{55,56}, A.M. Pinto²³, B. Popp⁵⁷, A. Putoux²⁴, H.L. Rehm⁵¹, A. Reis^{8,9}, A. Renieri^{23,45}, J.A. Rosenfeld^{46,58}, M. Rossi²⁴, E. Salzano⁵⁵, P. Saugier-Veber³⁶, M. Seri²⁶, G. Severi²⁶, F.M. Sonmez⁵⁹, G. Strobl-Wildemann⁶⁰, K.E. Stuurman⁶¹, E. Uctepe⁶², H. Van Esch⁶³, G. Vitetta²⁶, B.B.A. de Vries², D. Wahl⁶⁴, T. Wang^{30,65,66,67}, P. Zacher⁶⁸, K.R. Heitink⁶⁹, F.G. Ropers⁷⁰, D. Steenbeek⁷¹, T. Rybak⁷², G.W.E. Santen^{1,*}

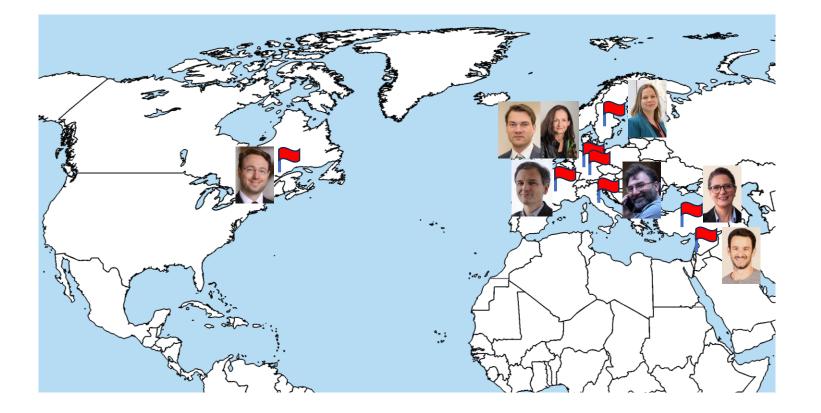
CARE4ARID1B

Dagmar Wieczorek, Medical Faculty and University Hospital, Düsseldorf, Germany

CARE4ARID1B: Developmental Trajectories in *ARID1B*-Related Disorder – a Multi-Method Multi-Site Prospective Natural History Study

Call for patients – Study starts now

Dagmar Wieczorek Institute of Human Genetics, Medical Faculty and University Hospital, Heinrich Heine University, Düsseldorf, Germany 17.03.2025



Partners involved in CARE4ARID1B

Research partners (funded):

Gal Lazarus (Coordinator) Jerusalem, Israel

Philippe Campeau Montreal, Canada

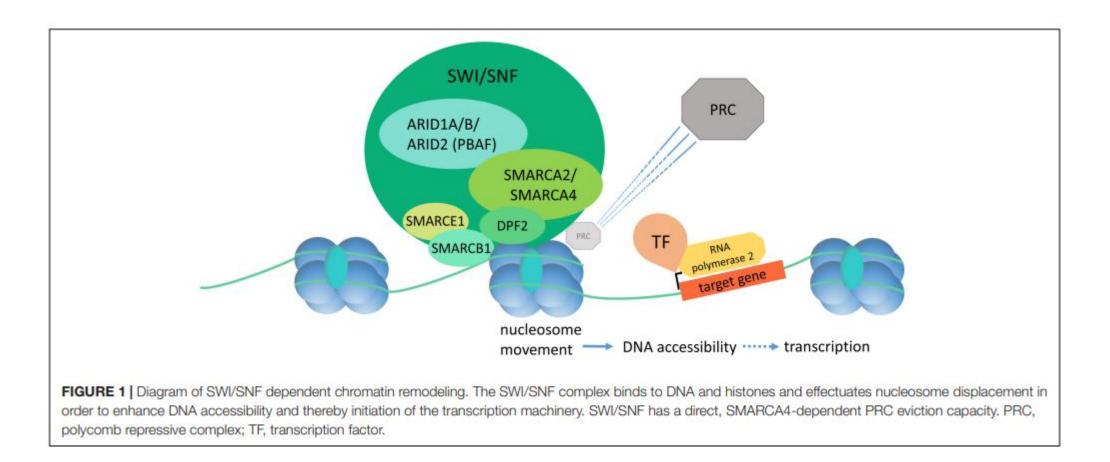
Gaetano Cantalupo Verona, Italy

Peter Krawitz Bonn, Germany

Vincent des Portes Lyon, France

Kristiina Tammimies Stockholm, Sweden

Yasemin Alanay Istanbul, Turkey


Collaborators (not funded)

Amanda Seidl, West Lafayette, Indiana, USA Audrey Thurm, Bethesda, Maryland, USA Eva Meisenzahl, Düsseldorf, Germany

SWI/SNF chromatin remodeling complex

Haploinsufficiency of *ARID1B*, a Member of the SWI/SNF-A Chromatin-Remodeling Complex, Is a Frequent Cause of Intellectual Disability

Juliane Hoyer,^{1,8} Arif B. Ekici,^{1,8} Sabine Endele,^{1,8} Bernt Popp,¹ Christiane Zweier,¹ Antje Wiesener,¹ Eva Wohlleber,² Andreas Dufke,³ Eva Rossier,³ Corinna Petsch,¹ Markus Zweier,¹ Ina Göhring,¹ Alexander M. Zink,² Gudrun Rappold,⁴ Evelin Schröck,⁵ Dagmar Wieczorek,⁶ Olaf Riess,³ Hartmut Engels,² Anita Rauch,^{1,7} and André Reis^{1,*}

The American Journal of Human Genetics 90, 565-572, March 9, 2012

Table 1.

Molecular Genetic Testing Used in Coffin-Siris Syndrome

Gene ¹	Proportion of CSS Attributed to	Proportion of Pathogenic Variants ³ Detected by Method			
	Pathogenic Variants in Gene ²	Sequence analysis ⁴	Gene-targeted <u>deletion/duplication</u> <u>analysis</u> ⁵		
ARID1A	<5%	100% ⁶	Unknown ⁷		
ARID1B	~37%	~95%	~5% 8		
ARID2	Rare ⁹	100%	Unknown ⁷		
DPF2	Rare ¹⁰	100%	Unknown ⁷		
PHF6 ¹¹	Rare ¹²	100%	Unknown ⁷		
SMARCA2 ¹³	~2%	>90%	1 affected person		
SMARCA4	~7%	100%	Unknown ^{7, 14}		
SMARCB1	~7%	100%	Unknown ^{7, 14}		
SMARCC2	Rare ¹⁵	~75%	4 affected persons		
SMARCE1	~2%	100%	Unknown ^{7, 14}		
SOX4	Rare ¹⁶	100%	Unknown ⁷		
SOX11	~2% 17	~40% 18	7 persons w/deletions & a CSS <u>phenotype</u> reported to date 19		
Unknown ²⁰	~40%	NA			

1	Mutations		Growth		Development			t	Clinical features	
n f	m nav	PTV bw	ht u	t OFC	eima	sit	walk	speak	skin neuro face heart skel hair dev eve abdo teeth	
ANKR011 34 18	18 2	32 (0.38)	(1.B1) (1.	16) (1.6B)	2	12	22	24	00000000	ANKRD11
ARID1B 32 13		30 (055)	(-1.33) (-0.	6B) (-0.56)	2.25	9.5	24	33	2809189017	ARID1B
KMT2A (29 13	17 4	28 (-0.43)	-2.12 -1.	12 (2.17)	1.5	9	19	23.5	000070000	KMT2A
DDX3X (28) (28)	0 14	14 (-0.37)	0.12 0	3 (-127)	2.25	12	24	30	2000200	DDX3X
ADNP (21) (6)	15 2	(19) (-0.4B)	(1.43) (0.	43 (-1.03)	2.12	12	30	33	00000000	ADNP
MED13L 19 B	11 6	13 •0.87	(0.72) (0.	<u>1.18</u>	2	(12)	38	47	201372886	MED13L
DYRK1A 118 6	Contraction of the second seco	14 (1.82)	2.04 (1.	93 (4 27)	2.5	(10.5)	24	38	2000000000000000000000000000000000000	DYRK1A
EP300 17 🖲	B (5)	12 •1.09	2.23 (1.	91 (4.29)	2.12	(12)	24	34.5	0000000	EP300
SCN2A (17) (10)	7 12	5 •0.04	(0.57) (0.	26) (2.22)	6	12	30	38.5	00051300	SCN2A
SETD5 17 10	7 2	15 (-0.69)	(0.63) (0	.7 (-0.96)	3.12	12	24	12	3033 1 00	SETD5
KCNQ2 118 9	and the second s	0 0.71	0.09 0.	34) (-0.84)	2.12	(B)	60	60	00000000	KCNQ2
MECP2 (13) (14)	The second secon	6 0.31	0.08 01	36 (-0.74)	1.5	10	27	30,5	50401 <u>6</u> 00	MECP2
		15 0.41	(1.41) (0.	41) (1.47)	1.5	12	24	(dB)	000000000	SYNGAP1
ASXL3 📵 7	"manage and a second se	(14) (0.43)	·0.1) (0.		2.23	(13)	60	73	001151169	ASXL3
SATB2 11 3	A CONTRACTOR OF A CONTRACTOR A CONT	B (0.34)	(0.43) (0.	43 (-0.B)	1.5	(10)	24	74	00548412	SATB2
	6 3	10 (0.24)	(-D.97) (D.		2.75	15	35	E4 5	®0000000	TCF4
CDK13 12 11	Contraction of the second seco		•2.01 •1.		1.75	12	24	22	83880230	CDK13
CREBBP (12) (B)	I CARLES AND A REAL PROPERTY OF	3 01.18	2 1.	06) (-2.38)	1.75	B	20	33	10131970	CREBBP
DYNC1H1 12 B	A REAL PROPERTY OF THE REAL PR	0 0.01	(0.83) (-0.		2	(10)	30	27	00000000	DYNC1H1
FOXP1 12 1		B (0.25)	0.24 0		2.23	(12)	21.5	60	0303000	FOXP1
PPP2R5D 12 0			(0.68) (0 .		3.38	19	(dB)	60	00000000	PPP2R5D
PURA 12 7		7 (0.84)	(0.1B) (0.		3.23	14	32.5	36	00000000	PURA
CTNNB1 11 7			<u>(1,28</u>) <u>(−</u> 0		3	17	30	42	0030000	CTNNB1
KAT6A 11 1		B (0.23)	(0.B2) (0		2.25	12	22	36	9373703	KAT6A
STXBP1 🖽 🖸	the second s	5 0.31	(0.17) [0]		2	(11)	27	48	0030830	STXBP1
SMARCA2 10 7			(0.56) (0.		1.5	(12)	24	30	00000000	SMARCA2
EHMT1 10 3		(7) (0.28)	(0.41) (0.		2.23	(12)	24	38	3033800	EHMT1
ITPR1 10 7	3 10	0 0.27	(0.77) (0.	95) (-1.3)	2	(11)	60	38	00000000	ITPR1

WES in 4293 families with NDD

Prevalence and architecture of de novo mutations in developmental disorders The Deciphering Developmental Disorders Study, Nature 2017



- No published natural history data derived from repeated assessments of children with ARID1B-RD are available
- Published data were gathered from multiple sources or did not involve clinician-administered standardized developmental assessment (e.g. Vineland Adaptive Behavior Scales)
- Knowledge on behavioural difficulties, communication and daily living skills is limited
- Matching of ARID1B epigenetic profile to deep phenotyping is lacking
- Extensive proteomic studies in ARID1B-RD are lacking

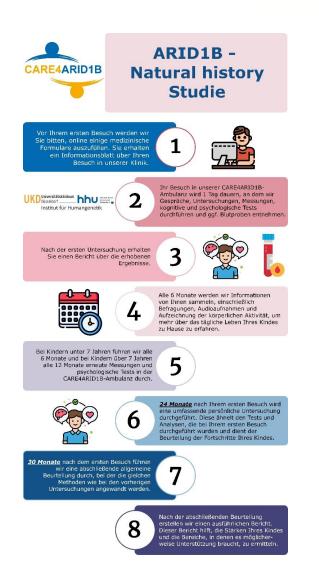
Study population

Participants (n=135)

- must be between 2 and 18 years at screening
- must have a documented pathogenic or likely-pathogenic variant in ARID1B
- must have a caretaker sufficiently fluent in the site-specific language

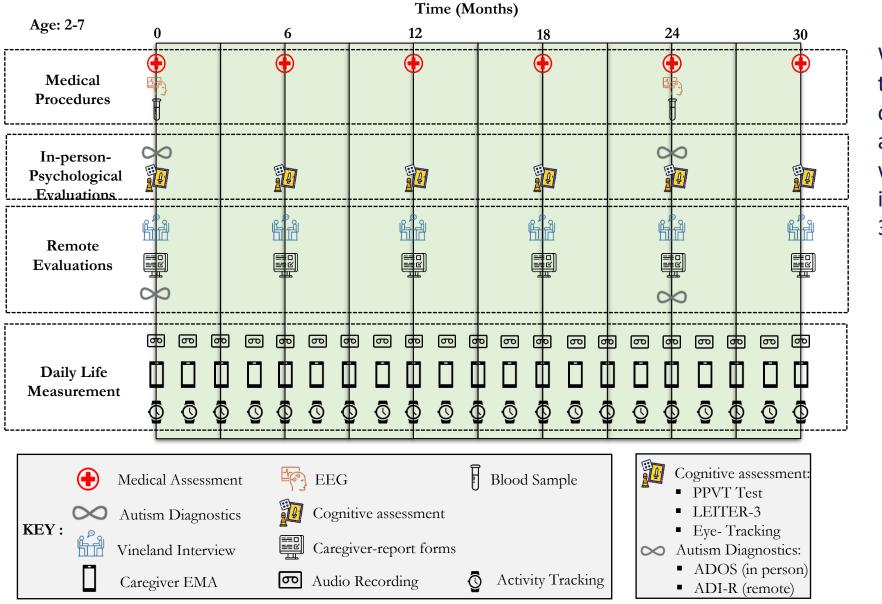
Exclusion criteria

- any other significant disease/disorder
- deletions that involve additional genes beyond ARID1B
- current enrollment in any experimental treatment



- The study is scheduled to span three years
- Thirty months of active participant monitoring

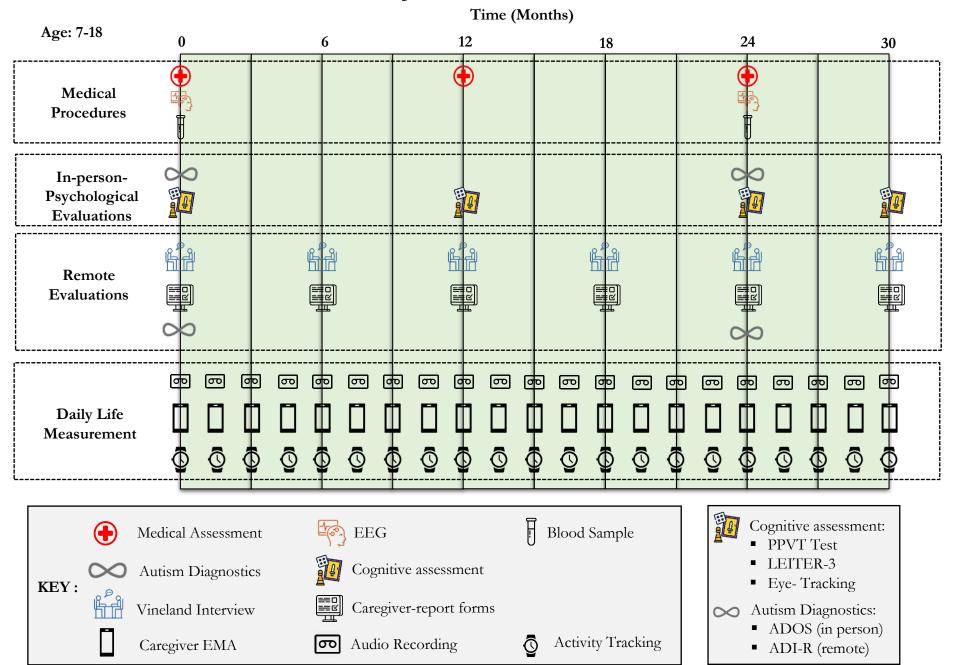
Heinrich Heine


Universität

Düsseldorf

ATHAKA

Study protocol (for individuals < 7 years)



We will monitor the development of 135 children and adolescents with ARID1B-RD in seven sites, for 30 months.

Universitätsklinikun

Humangenetik

Timeline for children 7-18 years

Medical Procedures

Hearing test

Neuropediatric/ Medical genetic examination

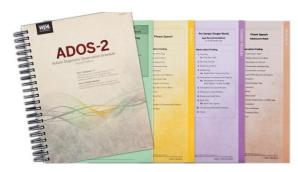
Photographs for Gestaltmatcher

GestaltMatcher Database Possibilities of use

Blood sampling

In person psychological evaluations

Cognitive assessment



Eyetracker

∞ Autism Diagnostics

Remote evaluations

Vincland.-3: The adaptive behavior assessment you know and trust. Now give the people in your care an even better chance at success. Anotype was a provide the adaptive to solve a people in your care and the solve at success. Anotype was a people in your care and the solve at success at success and the solve at success at su

Internet products of the state of the state

ALWAYS LEARNING

ADI-R Diagnostisches Interview für Autismus – Revidiert

 Sven Bölte
 Deutschsprachige Adspitation des Autiem Daspractic

 Dorothes Röhl
 Intorview – Revised (ADI-R) von Mehael Ratter,

 Gabriels Schmitzer
 Ann Le Coultear und Gatheline Lord

 Fritz Poustka
 Ann Le Coultear und Gatheline Lord

(hogrefe

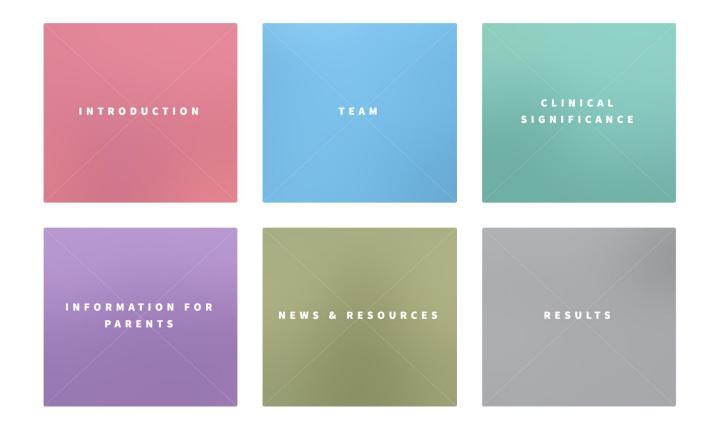
Writing Measurable Goals and Goal Attainment Scaling

118 7d RHR

74

Daily life measurements

Physical activity and sleep monitors


Vocal development tracking from daylong recordings

Monthly ecological momentary assessment

European Joint Programme on Rare Diseases

CARE4ARID1B Understanding *ARID1B*-Related Disorder: A Multi-Method, Multi-Site Prospective Natural History Study

Homepage

www.care4arid1b.org

Dissemination and communication

Kick-off meeting Summer school Regular webinars Patient community engagement Career support activities

Primary objectives

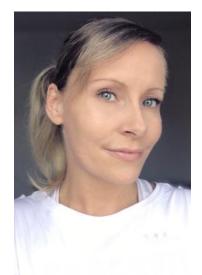
- to establish a comprehensive, integrative understanding of the development of ARID1B-RD encompassing all relevant functional domains and physiological systems
- to characterize multiple traditional and novel clinical endpoints for upcoming targeted ARID1B-RD clinical trials.
- to identify biosignatures of ARID1B-RD that may be utilized for stratification and prediction of the disorder's progression.

For further information: www.care4arid1b.org

If you have interested families, please contact: arid1b@mail.huji.ac.il or dagmar.wieczorek@med.uni-duesseldorf.de

Team Düsseldorf

Prof Eva Meisenzahl-Lechner Ioulia Ziavrou

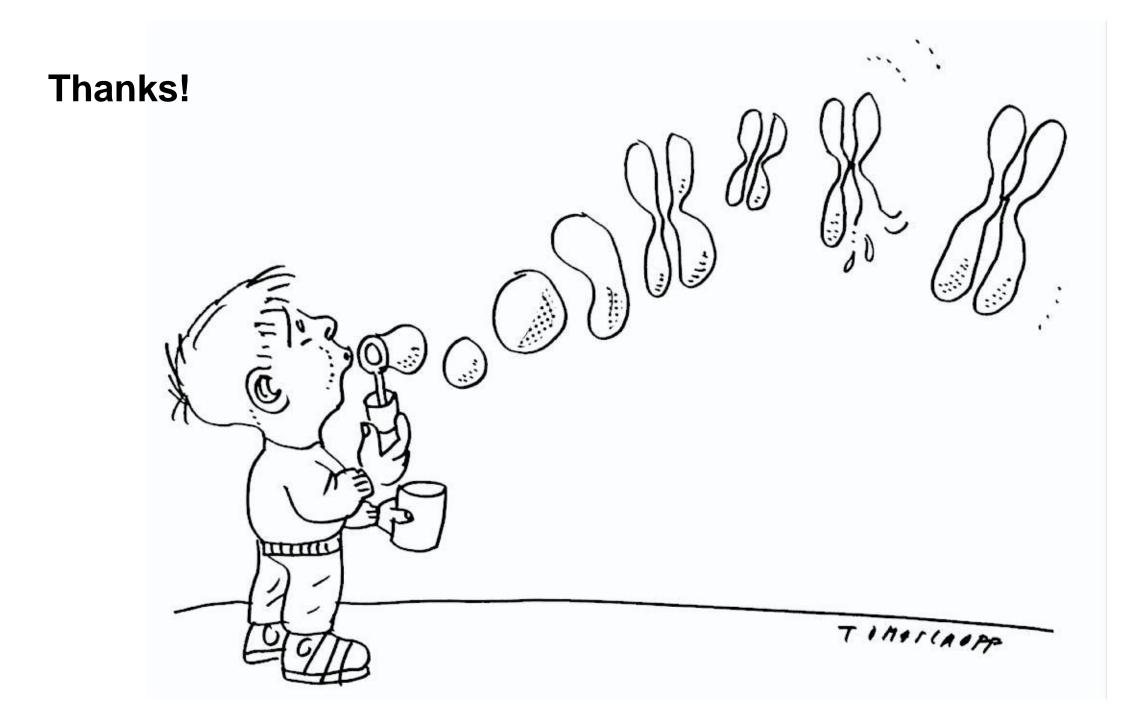

Manfred Beier

Manuel Michels

Prof Felix Distelmaier

Dr. Svenja Daschkey

SHK N.N.



Dr. Melanie Sapp

Paul Contzen

The patient's perspective

Gal Lazarus, Ph.D., Department of Psychology, The Hebrew University of Jerusalem, Israel

Discussion time - Conclusion with speakers and moderator


Discussion & Conclusion

Time for questions

- Satisfaction Survey :
 - https://forms.office.com/e/iXLm6EadF2
- Website :
 - https://ern-ithaca.eu
 - https://ern-ithaca.eu/webinars/

Thank you for your participation

European Reference