ERNITHACA Webinar 2025

ENDOCRINE ASPECTS OF RASOPATHIES

Tuesday, 18 nov 2025 - 17h00 - 18h30 CEST Chair by Laura Mazzanti, Italy

Welcome - Technical points

- We are please to be numerous 97 registrations
- Webinar being recorded
- Thank you to
 - Turn off your microphone and disconnect your camera
 - Use the Chat for your questions or Raise your hand at the time of the discussions (end)
 - A satisfaction survey will be sent to you:
- Webinars # will be available on ITHACA's Website
- https://ern-ithaca.eu/documentation/educational-resources/
- Anne Hugon Project Manager ERN ITHACA anne.hugon@aphp.fr

Welcome and Introduction

Webinar: "Endocrine aspects of RASopathies"

"RASopathies" represent one of the most common non-chromosomal diseases affecting development and growth.

A brief introduction will outline their genetic heterogeneity and clinical variability.

We'll then explore the endocrinological aspects of **RASopathies**, focusing on key areas such as - growth, growth therapy, puberty and metabolic profiling – to better understand their impact on patient care and long-term outcomes.

The webinar is designed for all specialists involved in the care of individuals with **RASopathies**, particularly pediatricians, endocrinologists, geneticists and, of course, *patients* and *Families*, whose engagement and collaboration remain at the heart of effective management.

Introduction

Webinar: "Endocrine aspects of RASopathies"

Chaired by

• Laura Mazzanti, - Alma Mater Honorary Professor, University of Bologna, Bologna, Italy

A few words on our speakers

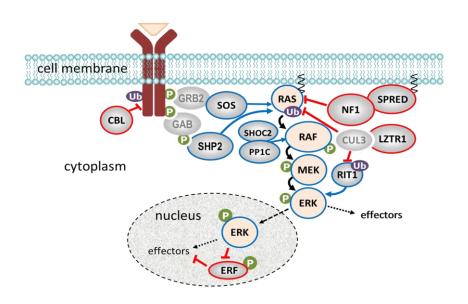
- Marco Tartaglia Head of Molecular Genetics and Functional Genomics, Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, Roma, Italy
- **Thomas Edouard** Endocrine, Bone Diseases, and Genetics Unit, Children's Hospital, Toulouse University Hospital, Toulouse, France
- Federica Tamburrino Rare Disease Unit, Department of Pediatrics, IRCCS Policlinico di Sant'Orsola, Bologna, Italy
- Alexander A L Jorge University of São Paulo (USP), Head and Principal Investigator of the Genetic Endocrinology Unit at Hospital das Clínicas, University of São Paulo, São Paulo, Brazil

Agenda

- 1. 'The molecular genetics of RASopathies', Marco Tartaglia
- 2. 'Growth and growth therapies in RASopathies', Thomas Edouard
- 3. 'Puberty in RASopathies', Federica Tamburrino
- 4. 'Metabolic Profile in Patients with Noonan Syndrome', Alexander A L Jorge

Conclusion with speakers and moderator

Topic 1- The molecular genetics of RASopathies


Marco Tartaglia

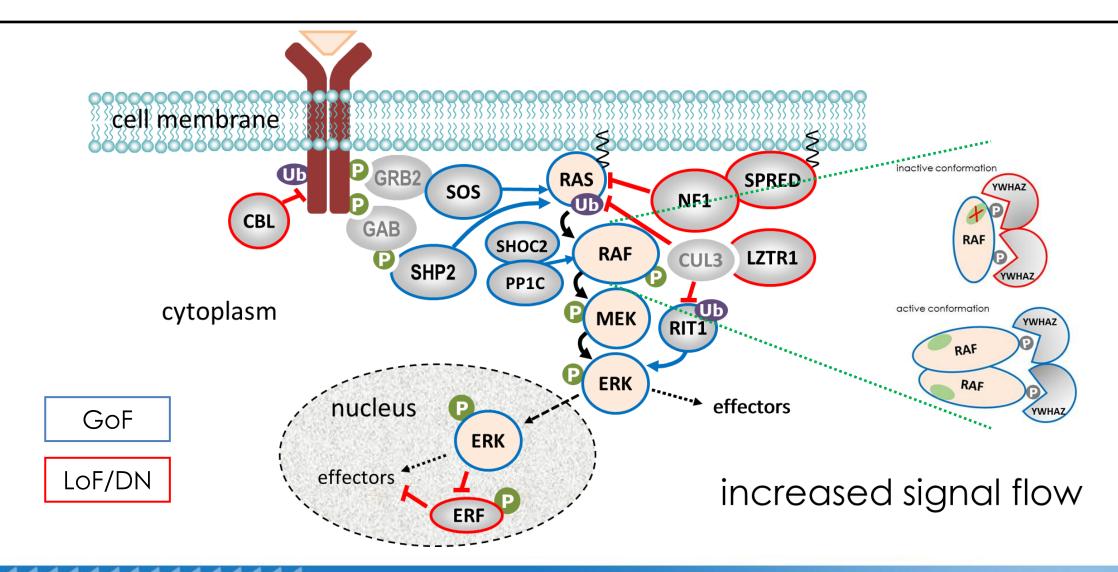
Head Molecular Genetics and Functional Genomics, Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, Roma, Italy

ERN-ITHACA Webinar 2025

Molecular Genetics of RASopathies

Marco Tartaglia

Molecular Genetics and Functional Genomics

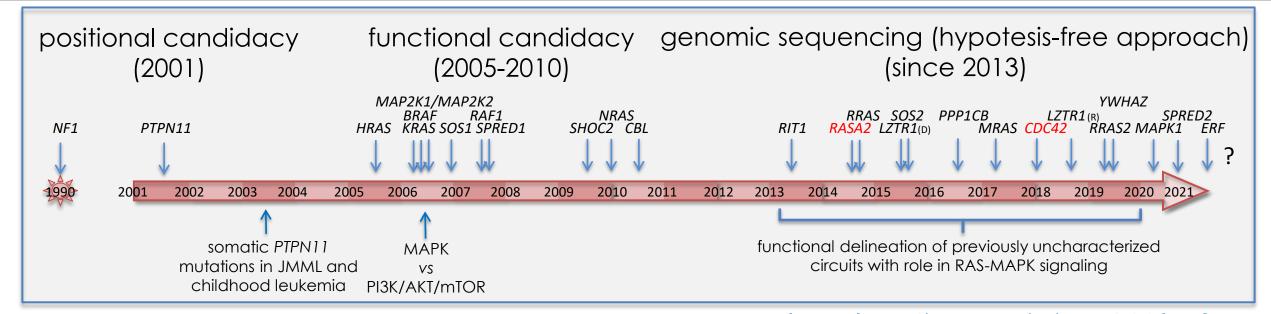

Marco Tartaglia
Disclosure Information (last three years)

<u>Speakers Bureau/Honoraria:</u> Novo Nordisk, Sandoz

Consultant/Advisory Board: Novo Nordisk, BioMarin

Molecular basis

major clinical features


systemic RASopathies

Distinctive facies CHD/HCM Short stature Variable DD/ID Variable cancer predisposition Hair and skin abnormalities Lymphatic abnormalities Skeletal abnormalities Bleeding diathesis Feeding difficulties Immunological abnormalities Delayed puberty Visual and hearing defects

Noonan syndrome NS with multiple lentigines cardiofaciocutaneous syndrome Costello syndrome Mazzanti syndrome CBL-associated syndrome, MAPK1-associated syndrome ERF-associated syndrome neurofibromatosis, type 1 Legius syndrome

Timeline - Milestones

25 genes implicated in RASopathies

Insights on the mechanism(s) of disease

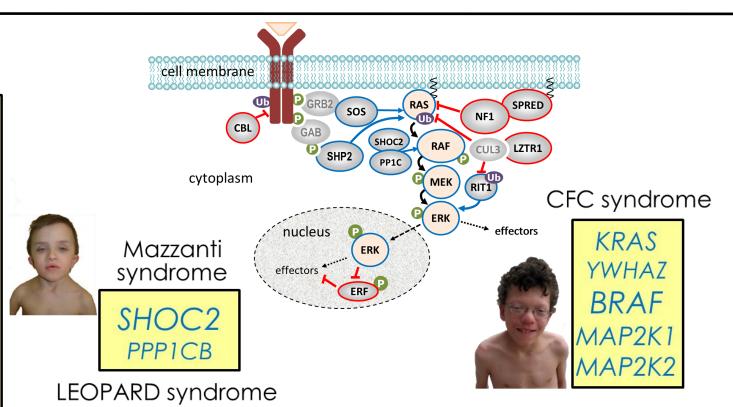
Molecular diagnosis in >90% of patients with clinical diagnosis

Improved care and more accurate counseling

Development of targeted therapies

systemic RASopathies - genetic landscape

CBL-associated syndrome


CBL

Noonan syndrome

PTPN11 SOS1 KRAS NRAS RAF1 BRAF MAP2K1 RIT1 SOS2 LZTR 1 MRAS RRAS2

SPRED2

neurofibromatosis type 1, incl. NFNS

NF1

ERF-associated syndrome

ERF

Legius syndrome

SPRED 1

PTPN11 RAF1 BRAF

Costello syndrome HRAS

Syndrome

MAPK1

MAPK1-associated

What have we learned?

"They don't give us time to learn anything in school; we have to listen to the teacher all day."

NS incidence has been estimated as between 1:1000 to 1:2500

Mendez HMM & Opitz JM (1985) Am J Med Genet 21:493-506.

Nora JJ et al. (1974) Am J Dis Child 127:48-55.

Noonan Syndrome

An Update and Review for the Primary Pediatrician

Jacqueline A. Noonan, M.D.

Introduction

Noonan syndrome1 is a relatively common multiple congenital anomaly syndrome, with an estimated incidence of between one per 1,000 and one per 2,500 live births.2 Affected individuals have characteristic facial features, are usually short in stature with a chest deformity, and about half have a congenital cardiac abnormality. Autosomal dominant inheritance. with variable expression, has been documented in a number of families. Many cases, however, appear to be sporadic. The diagnosis rests solely on clinical criteria, and so far, the underlying cause or genetic defect is unknown.

The natural history of this syndrome is still being defined. Children with Noonan syndrome have a large number of potential health problems, making it essential for the primary-care pediatrician to be aware of this syndrome. so that the special needs of such children may be met.

History

In 1883, Kobylinski3 reported a 20-year-old male with clinical features compatible with what is now called Noonan syndrome. Many early publications reported both

Department of Pediatric Cardiology, University of Kentucky, Lexington, Kentucky

Pediatric Cardiology, 800 Rose Street, Room MN 472, Lexington, KY 40536-0084

Address correspondence to: Jacqueline A. Noonan, M.D., University of Kentucky, Department of

males and females with a webbed neck, small stature with low-set ears, micrognathia, and other anomalies which probably represented a number of different syndromes including Noonan syndrome. In 1930, Ullrich⁴ described a number of patients with webbed neck and short stature, some of whom represented Turner syndrome and, no doubt, some Noonan syndrome. While Ullrich was intrigued primarily by the webbed neck, in 1938, Turner⁵ described a number of patients with sexual infantilism who also had a webbed neck and short stature. Turner syndrome was later recognized as a sex chromosome abnormality with either the absence or an abnormality of one of the X chromosomes. Ullrich was intrigued by the work of a mouse geneticist, Bonnevie, who had bred a mutant strain of mice with a webbed neck and swelling of the limbs. In 1949, Ullrich6 speculated on the possible similarity between his patients and the mice bred by Bonnevie. The term Bonnevie-Ullrich syndrome became popular, particularly in Europe, and was used to describe children. some of whom would now be recognized as having Noonan syndrome. In 1943, Flavell⁷ reported a male who had a phenotype similar to that reported by Turner, and he used the term "male

Because of the superficial resemblance between patients with Noonan syndrome and those with Turner syndrome, an abnormality of the X chromosome has been

Turner" syndrome. In 1963,

Noonan and Ehmke⁸ reported

nine patients -- six males and

three females, with short stature

and characteristic facies including

hypertelorism, ptosis, and low-set

ears - whom we felt represented a

distinct syndrome. Several of the

males had undescended testes.

Chest deformities were frequent.

and all had valvular pulmonary

stenosis. Chromosome studies

were normal. Dr. John Opitz9 sug-

gested the eponym Noonan syn-

drome be used to describe such

patients. He felt my observation

that this syndrome occurred in both

males and females was not associ-

ated with chromosomal abnormali-

ties and could be inherited justified

the eponym. For a number of years,

the term Turner phenotype persist-

ed, but in 1968, the eponym Noonan

syndrome appeared in print for the

first time. Thereafter, Dr. Victor

McKusick listed Noonan syndrome

as a hereditary congenital disorder

of the cardiovascular system. Since

the eponym Noonan syndrome is rel-

atively recent, many pediatricians

have only a limited knowledge of

this condition. This review is in-

tended to be an update and review

for the primary pediatrician.

Genetics

Syndrome of the month

Journal of Medical Genetics 1987, 24, 9-13

Noonan syndrome

JUDITH E ALLANSON

From The Genetics Centre, Southwest Biomedical Research Institute, PO Box 8845, Scottsdale, Arizona 85252. USA

Noonan syndrome was first described over 20 years ago by Noonan and Ehmke1; they defined a specific group of nine patients with valvular pulmonary stenosis who, in addition, had short stature, mild mental retardation, hypertelorism, and unusual facies. In retrospect, the first case was probably described by Kobylinski in 1883.2 Since that time, over 300 cases have been reported in medical publications. The incidence of Noonan syndrome

2500 live births.3 The cardinal features of Noonan syndrome are short stature, congenital heart defect, broad or webbed neck, a peculiar chest deformity with pectus carinatum superiorly and pectus excavatum inferiorly, and characteristic facies, which alter predictably with age to produce a discrete but changing phenotype which is described and illustrated below. Good reviews of Noonan syndrome

are to be found by Mendez and Opitz, 4 Nora et al,5

Received for publication 22 April 1986. Accepted for publication 2 May 1986.

Char et al.6 and Pearl.7

has been estimated to be between 1 in 1000 and 1 in

to subcutaneous oedema. Prepubertal growth tends to parallel the 3rd centile (60%) with a relatively normal growth velocity. The pubertal growth spurt is often reduced or absent.9 Delayed bone age has been reported in up to 20% of cases. Normal growth hormone levels with slightly raised somatomedin

Clinical features*

syndrome are now available.11 CRANIOFACIAL In the newborn period the main features are

levels have been found in some patients. 10 Detailed

growth curves for males and females with Noonan

At birth the average length is 47 cm. Birth weight is

generally normal (40%) but can be high, secondary

a thick helix (90%), deeply grooved philtrum with *Incidence figures are derived from reviews by Mendez and Opitz. 4 Pearl. 7 and Allanson unless specifically referenced.

hypertelorism with downward slanting palpebral

fissures (95%), low set, posteriorly rotated ears with

FIG 1 Facial appearance in newborn period.

CLINICAL PEDIATRICS

SEPTEMBER 19

others (MAP2K2, SOS2, CBL, HRAS, YWHAZ, CDC42, SHOC2, ...)

MAP2

RASopathies by gene

positive

last 2 years - conscutive unselected series - suspected RASopathy (N=450)

Other «RASopathy genes» likely exist

Molecular diagnosis offers the opportunity to overcome the weakness of subjective clinical criteria

Inheritance

American College of Medical Genetics and Genomics

RASopathies are largely autosomal dominant disorders ...

... but recessive forms do exist

ORIGINAL RESEARCH ARTICLE

Genetics inMedicine

0)

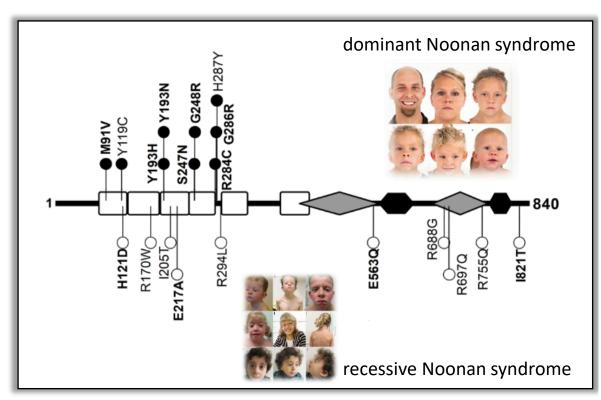
Autosomal recessive Noonan syndrome associated with biallelic *LZTR1* variants

Jennifer J. Johnston, PhD^{1,23}, Jasper J. van der Smagt, MD^{2,23}, Jill A. Rosenfeld, MS^{3,23}, Alistair T. Pagnamenta, PhD^{4,23}, Abdulrahman Alswaid, MD⁵, Eva H. Baker, MD, PhD⁶, Edward Blair, BMSc⁷, Guntram Borck, MD⁸, Julia Brinkmann⁹, William Craigen, MD, PhD³, Vu Chi Dung, MD, PhD¹⁰, Lisa Emrick, MD¹¹, David B. Everman, MD¹², Koen L. van Gassen, PhD², Suleyman Gulsuner, MD, PhD¹³, Margaret H. Harr, MS¹⁴, Mahim Jain, MD, PhD^{15,24}, Alma Kuechler, MD¹⁶, Kathleen A. Leppig, MD¹⁷, Donna M. McDonald-McGinn, MS¹⁸, Ngoc Thi Bich Can, MD, PhD¹⁰, Amir Peleg, MD¹⁹, Elizabeth R. Roeder, MD²⁰, R. Curtis Rogers, MD¹², Lena Sagi-Dain, MD¹⁹, Julie C. Sapp, ScM¹, Alejandro A. Schäffer, PhD²¹, Denny Schanze, PhD⁹, Helen Stewart, MD⁷, Jenny C. Taylor, PhD⁴, Nienke E. Verbeek, MD, PhD², Magdalena A. Walkiewicz, PhD^{3,25}, Elaine H. Zackai, MD¹⁸, Christiane Zweier, MD²², Members of the Undiagnosed Diseases Network, Martin Zenker, MD, PhD⁹, Brendan Lee, MD, PhD³ and Leslie G. Biesecker, MD¹

had a typical NS phenotype and presented

[Noonan and Ehmke, 1963; Noonan, 1968; Collins and

ARTICLE

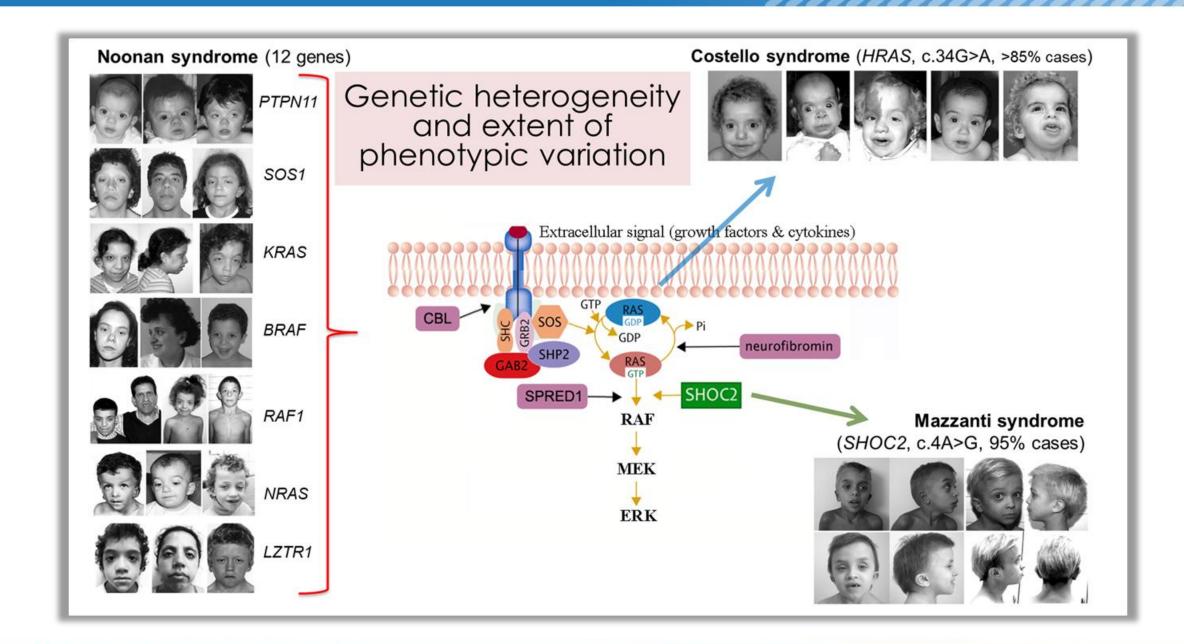

The American Journal of Human Genetics 108, 2112-2129, November 4, 2021

SPRED2 loss-of-function causes a recessive Noonan syndrome-like phenotype

Marialetizia Motta,¹ Giulia Fasano,¹,¹¹8 Sina Gredy,²,¹8 Julia Brinkmann,³,¹8 Adeline Alice Bonnard,⁴,⁵,¹8 Pelin Ozlem Simsek-Kiper,⁶ Elif Yilmaz Gulec,² Leila Essaddam,⁸ Gulen Eda Utine,⁶ Ingrid Guarnetti Prandi,⁶ Martina Venditti,¹ Francesca Pantaleoni,¹ Francesca Clementina Radio,¹ Andrea Ciolfi,¹ Stefania Petrini,¹⁰ Federica Consoli,¹¹ Cédric Vignal,⁴ Denis Hepbasli,² Melanie Ullrich,² Elke de Boer,¹²,¹³ Lisenka E.L.M. Vissers,¹²,¹³ Sami Gritli,¹⁴ Cesare Rossi,¹⁵ Alessandro De Luca,¹¹ Saayda Ben Becher,⁸ Bruce D. Gelb,¹⁶ Bruno Dallapiccola,¹ Antonella Lauri,¹ Giovanni Chillemi,⁶,¹² Kai Schuh,²,¹¹¹ Hélène Cavé,⁴,⁵,¹¹ Martin Zenker,³,¹¹ and Marco Tartaglia¹,*

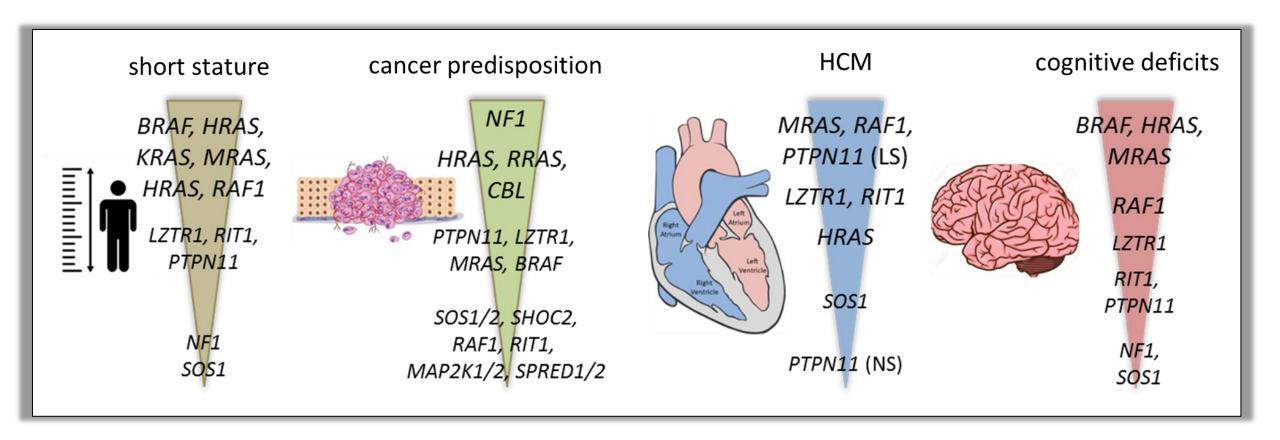
Two different classes of LZTR1 mutations underlie dominant and recessive forms of Noonan syndrome

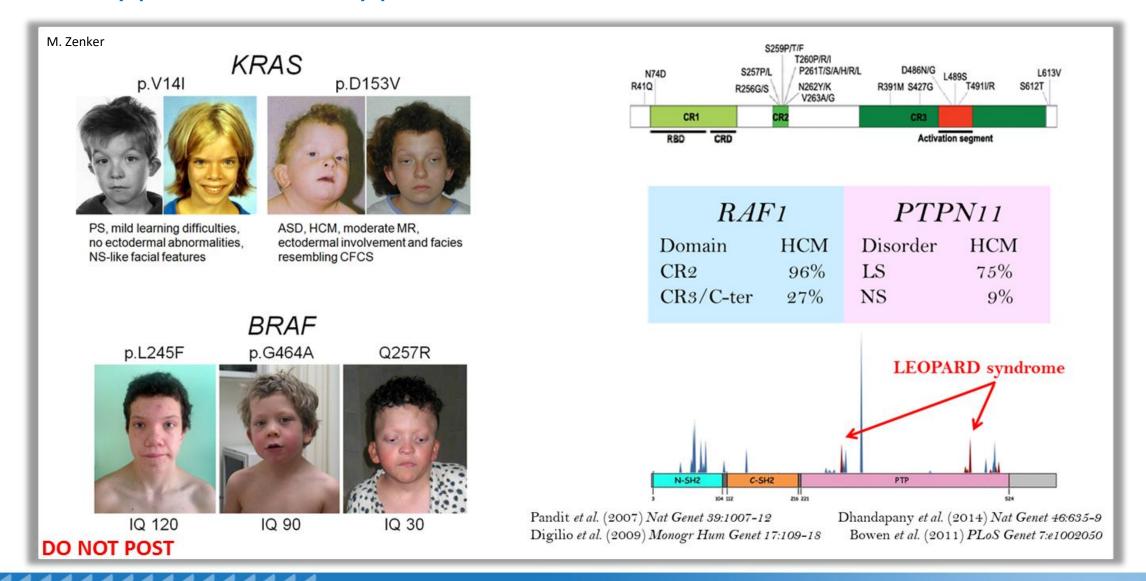
Yamamoto *et al.* (2015) *J Med Genet 52:413-21* Johnston *et al.* (2018) *Genet Med 20:1175-85*



Negative Dominance

VS


Loss of Function



Genotype-Phenotype Correlations at the Gene Level

Genotype-Phenotype Correlations at the Mutation Level

> Am J Dis Child. 1968 Oct;116(4):373-80. doi: 10.1001/archpedi.1968.02100020377005.

Hypertelorism with Turner phenotype. A new syndrome with associated congenital heart disease

J A Noonan

> Am J Dis Child. 1969 Jun;117(6):652-62. doi: 10.1001/archpedi.1969.02100030654006.

Multiple lentigenes syndrome

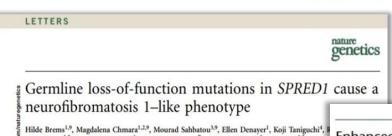
R J Gorlin, R C Anderson, M Blaw

Case Reports > Am J Med Genet. 1986 Nov;25(3):413-27. doi: 10.1002/ajmg.1320250303.

New multiple congenital anomalies/mental retardation syndrome with cardio-facio-cutaneous involvement--the CFC syndrome

J F Reynolds, G Neri, J P Herrmann, B Blumberg, J G Coldwell, P V Miles, J M Opitz

Case Reports > Aust Paediatr J. 1977 Jun;13(2):114-8. doi: 10.1111/j.1440-1754.1977.tb01135.x.


A new syndrome: mental subnormality and nasal papillomata

J M Costello

Case Reports > Am J Med Genet A. 2003 Apr 30;118A(3):279-86. doi: 10.1002/ajmq.a.10923.

Noonan-like syndrome with loose anagen hair: a new syndrome?

Laura Mazzanti ¹, Emanuele Cacciari, Alessandro Cicognani, Rosalba Bergamaschi, Emanuela Scarano, Antonino Forabosco

Riet Somers^{1,5}, Ludwine Messiaen⁶, Sofie De Schepper⁷, Jean-Pierre Fryns¹, Jan Cools^{1,5}, Peter Gilles Thomas3,8, Akihiko Yoshimura4 & Eric Legius1

Original article

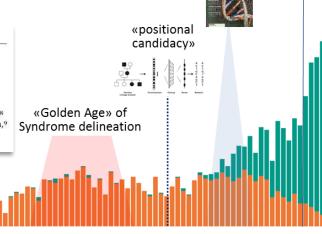
Germline mutations of the CBL gene define a genetic syndrome with predisposition to juve mvelomonocytic leukaemia

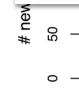
B Pérez. 1,2 F Mechinaud. 3 C Galambrun. 4 N Ben Romdhane. 5 B Isidor. 6 J Derain-Court. B Cassinat. Lachenaud. S Kaltenbach. A Salmon. S Pereira, M L Menot, N Royer, D Fenneteau, A Baruchel, C Chomienne,

A Verloes. 1,12 H Cavé 1,2

Enhanced MAPK1 Function Causes a Neurodevelopmental Disorder within the RASopathy Clinical Spectrum

Marialetizia Motta, 1,27 Luca Pannone, 1,2,27 Francesca Pantaleoni, 1 Gianfranco Bocchinfuso, 3 Francesca Clementina Radio, 1 Serena Cecchetti, 4 Andrea Ciolfi, 1 Martina Di Rocco, 2,5 Mariet W. Elting, 6 Eva H. Brilstra, Stefania Boni, Laura Mazzanti, Federica Tamburrino, Larry Walsh, Katelyn Payne, 10 Alberto Fernández-Jaén, 11 Mythily Ganapathi, 12 Wendy K. Chung, 13 Dorothy K. Grange, 14 Ashita Dave-Wala, 15 Shalini C. Reshmi, 15,16 Dennis W. Bartholomew, 15 Danielle Mouhlas, 15 Giovanna Carpentieri, 1,2 Alessandro Bruselles,2 Simone Pizzi,1 Emanuele Bellacchio,1 Francesca Piceci-Sparascio, 17 Christina Lißewski, 18 Julia Brinkmann, 18 Ronald R. Waclaw, 19 Quinten Waisfisz, 6 Koen van Gassen, 7 Ingrid M. Wentzensen, 20 Michelle M. Morrow, 20 Sara Álvarez, 21 Mónica Martínez-García, 21 Alessandro De Luca, 17 Luigi Memo, 22 Giuseppe Zampino, 23 Cesare Rossi, 24 Marco Seri, 24 Bruce D. Gelb, 25 Martin Zenker, 18 Bruno Dallapiccola, 1 Lorenzo Stella, 3 Carlos E. Prada, 19,26 Simone Martinelli, 2,28 Elisabetta Flex, 2,28 and Marco Tartaglia 1,28,*


Germline CBL mutations cause developmental abnormalities and predispose to juvenile myelomonocytic leukemia


Charlotte M Niemeyer^{1,18}, Michelle W Kang^{2,18}, Danielle H Shin^{2,18}, Ingrid Furlan¹, Miriam Erlacher¹, Nancy J Bunin3, Severa Bunda4, Jerry Z Finklestein5, Kathleen M Sakamoto6, Thomas A Gorr1, Parinda Mehta7,

Irene Schm REPORT Andrea He Franco Loc Michael Of

Heterozygous Germline Mutations in the CBL Tumor-Suppressor Gene Cause a Noonan Syndrome-like Phenotype

Simone Martinelli,1 Alessandro De Luca,2 Emilia Stellacci,1 Cesare Rossi,3 Saula Checquolo,4 Francesca Lepri,2 Viviana Caputo,1 Marianna Silvano,1 Francesco Buscherini,3 Federica Consoli,2 Grazia Ferrara, Maria C. Digilio, Maria L. Cavaliere, Johanna M. van Hagen, Giuseppe Zampino, Barrara, Giuseppe Zampino, Maria L. Cavaliere, Johanna M. van Hagen, Giuseppe Zampino, Giuseppe Za Ineke van der Burgt,9 Giovanni B. Ferrero,10 Laura Mazzanti,11 Isabella Screpanti,4 Helger G. Yntema,9 Willy M. Nillesen,9 Ravi Savarirayan,12 Martin Zenker,13 Bruno Dallapiccola,5 Bruce D. Gelb,14 and Marco Tartaglia1,*

ARTICLE

Hypothesis-free

«functional

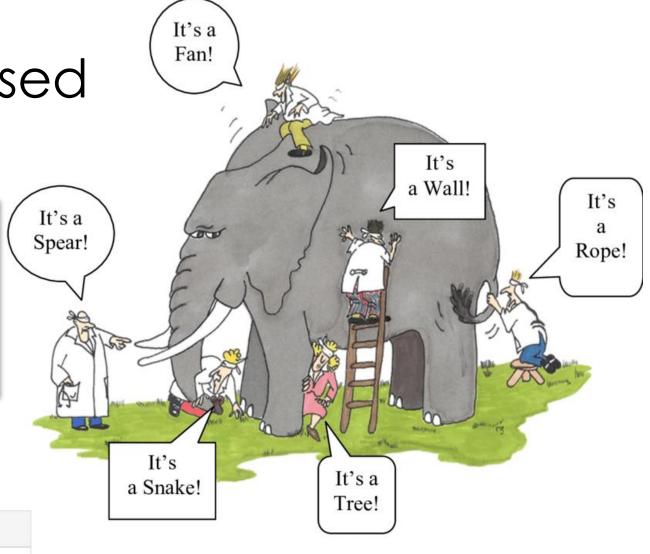
candidacv

Recognizing new RASopathies by unbiased clinical reassessment

ARTICLE

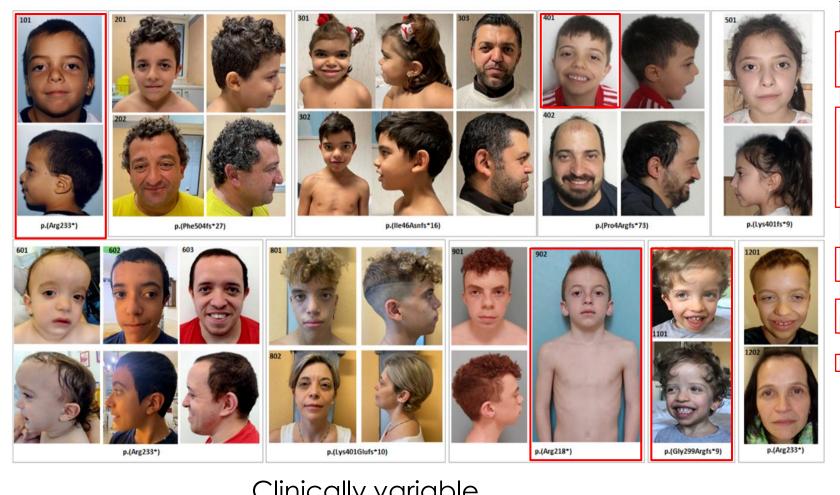
Loss-of-function variants in *ERF* are associated with a Noonan syndrome-like phenotype with or without craniosynostosis

Maria Lisa Dentici^{1,25}, Marcello Niceta ^{1,25}, Francesca Romana Lepri³, Cecilia Mancini², Manuela Priolo⁴, Adeline Alice Bonnard ^{1,5}, Camilla Cappelletti^{2,6}, Chiara Leoni ^{1,5}, Andrea Ciolfi ^{1,5}, Simone Pizzi², Viviana Cordeddu⁹, Cesare Rossi¹⁰, Marco Ferilli², Mafalda Mucciolo³, Vito Luigi Colona ^{1,5}, Christine Fauth¹¹, Melissa Bellini¹², Giacomo Biasucci¹², Lorenzo Sinibaldi ^{1,5}, Silvana Briuglia¹³, Andrea Gazzin ^{1,5}, Diana Carli ^{1,5}, Luigi Memo^{1,6}, Eva Trevisson ^{1,7}, Concetta Schiavariello ^{1,8}, Maria Luca^{1,5}, Antonio Novelli ^{1,5}, Caroline Michot^{1,9}, Anne Sweertvaegher^{2,0}, David Germanaud^{2,1,2,2}, Emanuela Scarano^{1,8}, Alessandro De Luca ^{1,5}, Giuseppe Zampino^{7,8}, Martin Zenker ^{2,4}, Alessandro Mussa ^{1,5}, Bruno Dallapiccola², Helene Cavé ^{1,5}, Maria Cristina Digilio¹ and Marco Tartaglia ^{1,5}


© The Author(s), under exclusive licence to European Society of Human Genetics 2024

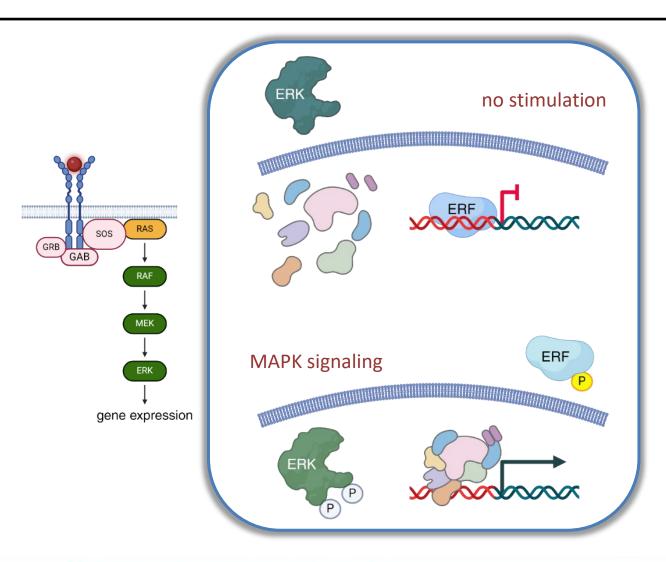
* 611888 OMIM - Online Mendelian Inheritance in Man

ETS2 REPRESSOR FACTOR; ERF


Gene-Phenotype Relationships

Location	Phenotype	View Clinical Synopses	Phenotype MIM number	Inheritance	Phenotype mapping key
19q13.2	Chitayat syndrome		617180	AD	3
	Craniosynostosis 4		600775	AD	3

ERF haploinsufficiency underlies a novel RASopathy



	Tot	CRS4
	(N=26)	(N=36)
Short stature (≤3rd centile)	15/26	4/6
DD/ID	13/253	10/30
Speech delay/learning difficulties	19/25	14/30
Behavioural abnormalities	5/26	10/28
Macrocephaly (including relative)	24/26	8/25
Facial features		
high forehead	16/26	29/35
hypertelorism	21/26	33/36
DPF	16/26	23/36
ptosis	16/26	25/36
Wide/depressed nasal bridge	17/26	34/36
thick lips/macrostomia	20/26	22/36
low-set ears	19/26	14/21
posteriorly angulated ears	17/26	15/20
thickened helix	12/26	14/20
Short/webbed neck	15/26	9/14
Low posterior hairline	8/26	11/14
CHD/HCM	1/25	1/14
Pectus abnormalities ¹	9/23	1/1
Ectodermal features		
thin/curly hair	11/26	2/36
sparse eyebrows	6/26	16/36
keratosis pilaris/ulerythema ophryogenes	4/25	NA
dark skin	10/26	NA
cafè-au-laits spots	6/24	NA
lentigines	4/24	NA
nevi	13/24	NA
Craniosynostosis ²	3 /13	19/25

Clinically variable
No subject show cardiac involvement

ERF & MAPK signaling

ERF is an ETS domain transcriptional repressor that binds to DNA in a sequence-specific manner to transcriptionally silence target genes

ERF is regulated by ERK phosphorylation via nucleo-cytoplasmic shuttling.
ERK-mediated phosphorylation promotes ERF translocation to the cytoplasm, allowing transcription of target genes

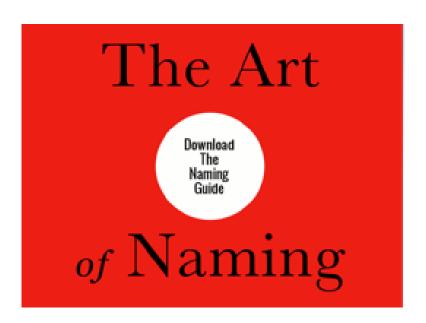
Notwithstanding the clinical overlap, different molecular mechanisms underlie RASopathies

TARGETED PHARMACOLOGICAL APPROACHES ARE REQUIRED

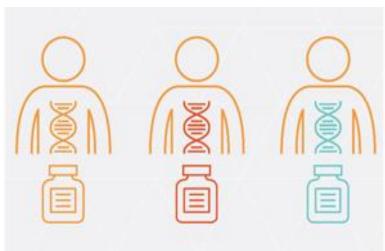
MAPK signaling

unknown pathways

PI3K/AKT/mTOR signaling

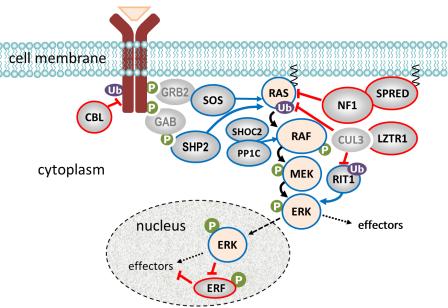

• Ptpn11^{Q79R} e Raf1^{L613V} models:

The use of MEK inhibitors allows to rescue multiple clinical features (e.g., reduced growth, HCM)


• Ptpn11^{Y279C} model:

Rapamycin, an inhibitor of the PI3K-AKT-mTOR pathway, is effective in blocking HCM progression

«Noonan syndrome» is not a clinically exhaustive term


the involved gene and pathogenic variant(s) should be taken into account to effectively apply precision medicine and optimize patient management and care.

Take home message (1)

RASopathies share the upregulation of RAS-MAPK signaling as a common pathogenetic mechanism

>25 disease genes identified; 13 implicated in Noonan syndrome

New RASopathies and recessive forms are emerging

Take home message (2)

Mutations may affect protein function by multiple mechanisms and have different consequences on intracellular signaling

Other pathways contribute to the clinical phenotype and phenocopies do exist

RASopathy mutants are weak hypermorphs & mutations do not necessarily predispose to cancer

OPBG

Marialetizia Motta
Clementina Radio
Cecilia Mancini
Luca Mignini
Claudia Compagnucci
Marcello Niceta
Antonella Lauri
Giulia Fasano
Andrea Ciolfi
Mattia Carvetta

ISS

Elisabetta Flex
Simone Martinelli
Viviana Cordeddu
Alessandro Bruselles
Luca Pannone
Valentina Muto
Simona Coppola
Emilia Stellacci
Giovanna Carpentieri
Erika Zara

Lorenzo Stella, Gianfranco Bocchinfuso (Rome) Giovanni Chillemi (Rome)

Rete Italiana per le RASopatie

Giuseppe Zampino, Chiara Leoni (Rome)
Alessandro De Luca (S. Giovanni Rotondo)
GiBi Ferrero & Alessandro Mussa (Turin)
Laura Mazzanti, Federica Tamburrino, Emanuela
Scarano & Cesare Rossi (Bologna)
M. Cristina Digilio & Maria Lisa Dentici (Rome)
Leonardo Salviati & Eva Trevisson (Padua)
Manuela Priolo, Giuseppe Limongelli (Naples)
Daniela Melis (Salerno)
Angelo Selicorni (Como)

NSEuroNet

Martin Zenker (Magdeburg), Bruce D Gelb (New York), Helene Cavé (Paris), Reza Ahmadian (Dusseldorf), Jeroen den Hertog (Utrecht), Armelle Yart (Tolouse), Monika Gos (Warclaw)

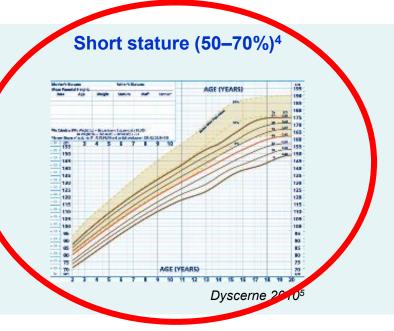
Topic 2 - Growth Abnormalities and New Therapeutic Perspectives

Thomas Edouard, Professor, MD, PhD, Endocrine, Bone Diseases, and Genetics Unit, Reference centre for rare diseases of growth, FIRENDO network, Endo-ERN Children's Hospital, Toulouse University Hospital, Toulouse, France

Disclosures

- Research funding (investigator in clinical trials): Biomarin, Novo Nordisk, QED therapeutics
- Advisory board participation: Biomarin, Novo Nordisk
- Fees for lecture: Biomarin, Kyowa Kyrin, Novo Nordisk, Pfizer
- This presentation was developed by the speaker and is sponsored by Novo Nordisk

Noonan syndrome (NS)

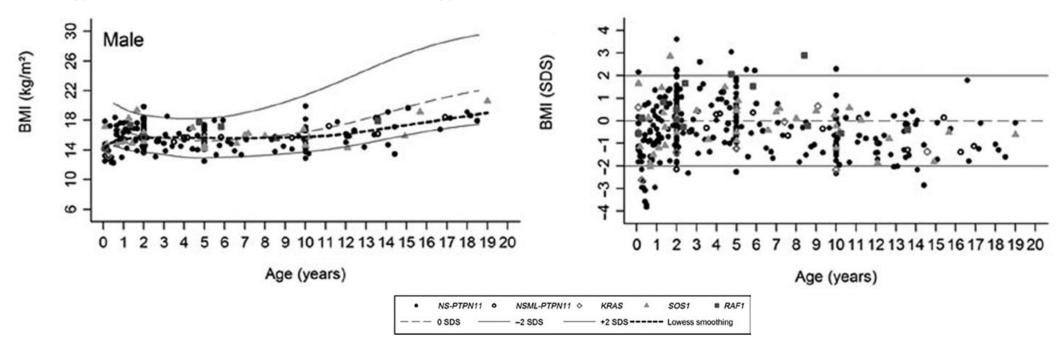

- Common genetic disorder (1 in 2,000 live births)¹
- Autosomal dominant (affected parent in ≈1/3)²

Distinctive facial features¹

Roberts et al. Lancet 2013¹

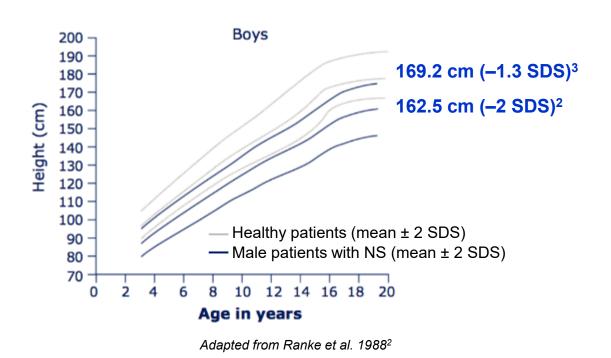
Supravalvular pulmonary stenosis Often associated with PVS, needs surgery NS (PTPN11, SOS1) CFCS (BRAF) Hypertrophic cardiomyopathy Frequently asymmetric hypertrophy Associated with LVOTO and MV anomalies NSML (PTPN11) CS (HRAS) CFCS (BRAF) NS (SOS1, KRAS, PTPN11, RAF-1) NS (SOS1, KRAS, PTPN11, RAF-1) Faienza et al. Genes 2024³

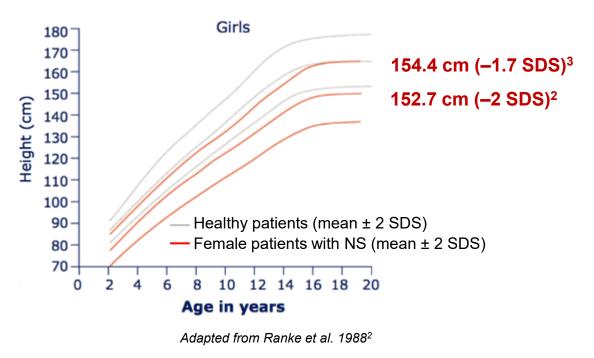
Congenital heart defects (80%)³



Many other defects

- Cryptorchidism in males⁶
- Skeletal anomalies (pectus, scoliosis)⁶
- Developmental delay and learning disability, hearing and visual impairment⁶
- Increased risk of cancer (juvenile myelomonocytic leukaemia 3%, brain tumour <1%)^{7,8}


Nutritional and metabolic aspects


- Feeding difficulties and failure to thrive are frequent in newborns and infants (75%)
 - Poor sucking, prolonged feeding times, recurrent vomiting
 - Tube feeding needed in 25%
 - Usually resolves within the first few years of life
- Lean phenotype with BMI in the low–normal range
- Aetiology unknown, could be due to increased energy expenditure

Growth and puberty

Short stature in 50-70% of patients with NS¹

- Birth length in the lower normal range (25% small for gestational age)
- Decreased growth velocity and short stature by 2 years of age
- Worsening during puberty due to delay
- Bone age typically delayed by about 2 years, allowing for prolonged catch-up growth

Noonan syndrome-related disorders

NS with multiple lentigines²

Lentigines, deafness



NS with loose anagen hair⁴

Hairless skin, loose anagen hair

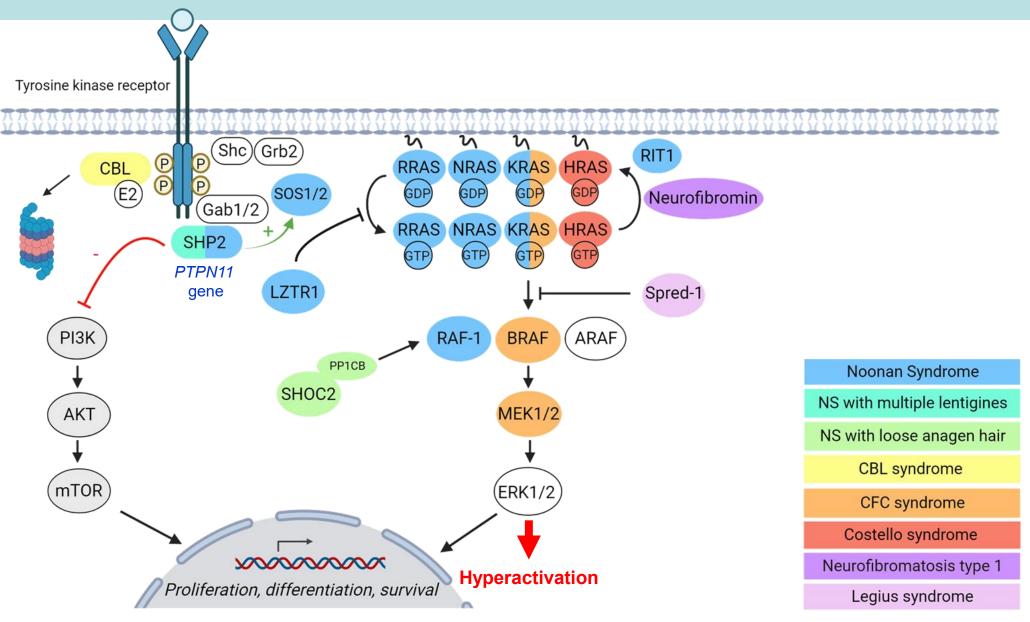
NS / NF1¹

Neurofibromas, café-au-lait spots

Noonan syndrome^{3,4}

Short stature, pulmonary valve stenosis

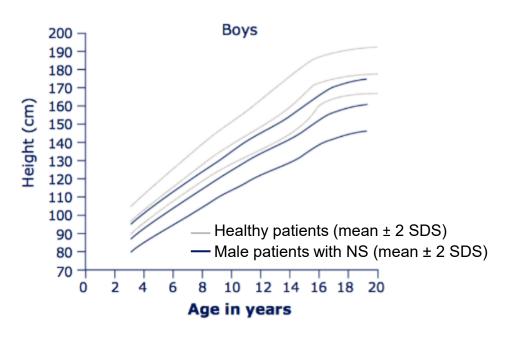
Cardiofaciocutaneous syndrome³


Ectodermal lesions, mental retardation

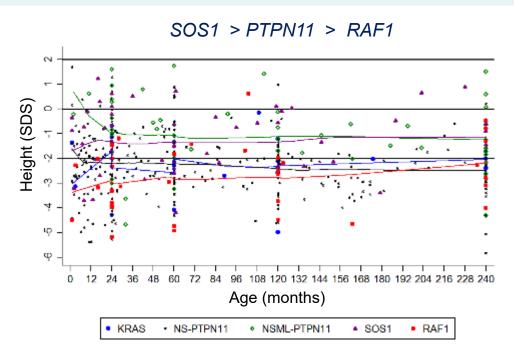
Costello syndrome³

HCM, mental retardation, solid tumours (15%)

RASopathies

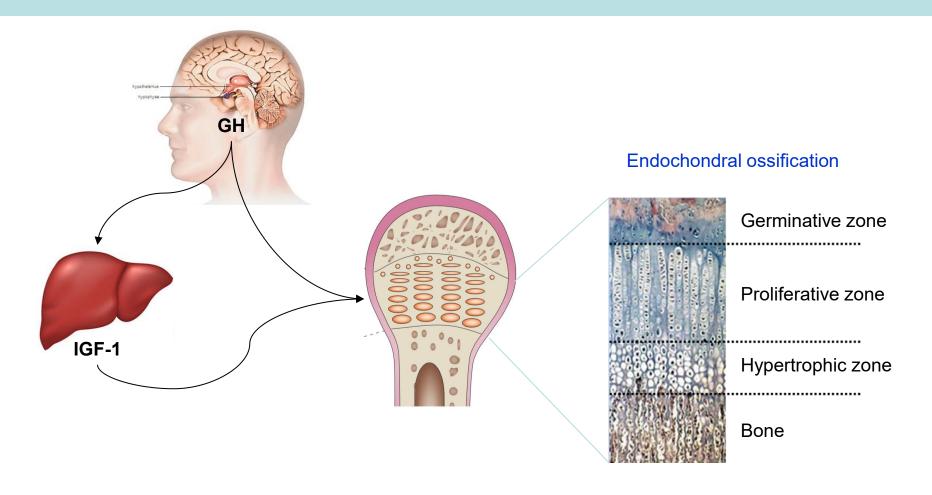


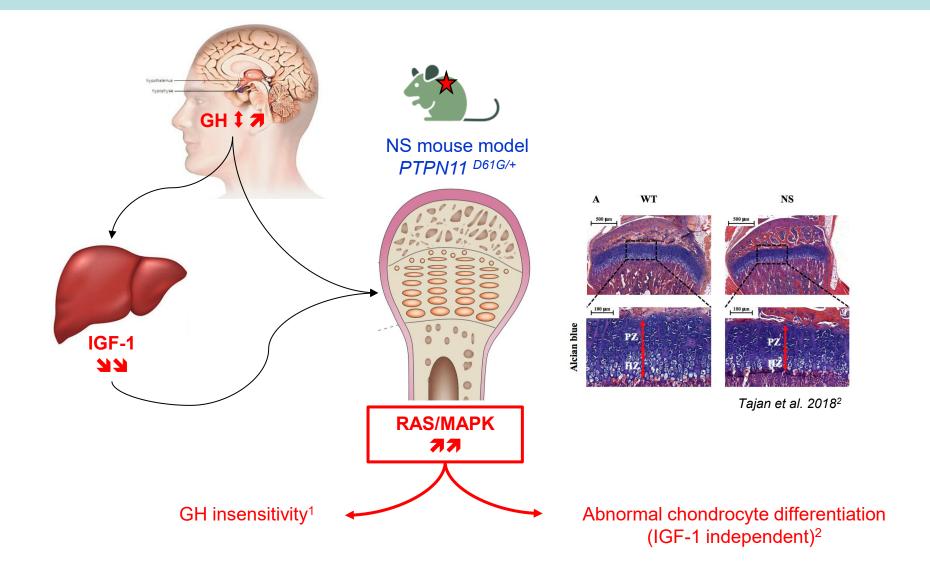
Genotype-phenotype correlations for growth



In 144 patients with a clinical diagnosis of NS

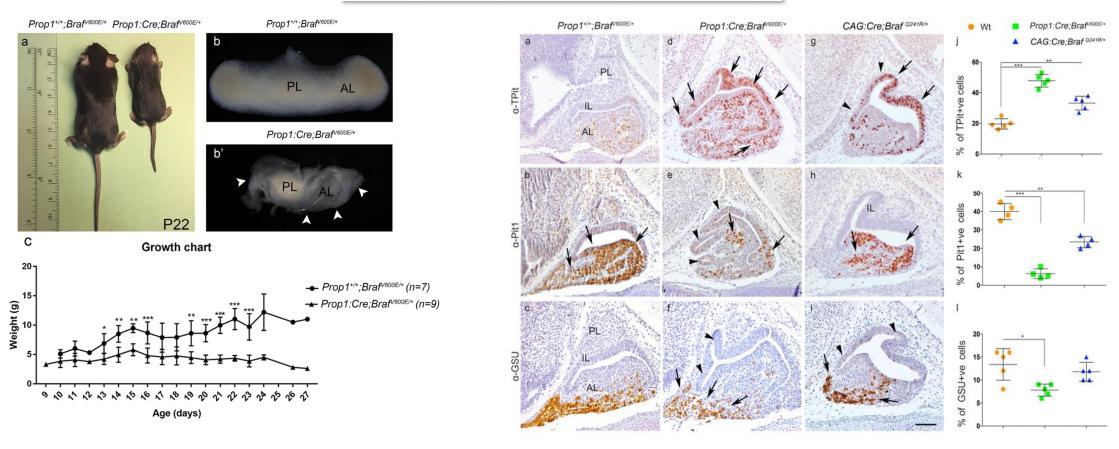
In 420 patients with a confirmed genetic diagnosis of NS


Adapted from Ranke et al. 19881


Adapted from Cessans et al. 2016²

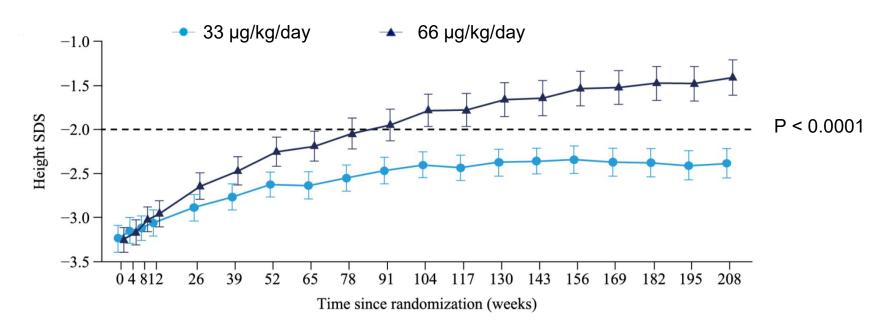
The severity of short stature is correlated with genotype

Pathophysiology of short stature (PTPN11 mutation)


Pathophysiology of short stature (PTPN11 mutation)

Pathophysiology of short stature (BRAF mutation)

Activating mutations in BRAF disrupt the hypothalamo-pituitary axis leading to hypopituitarism in mice and humans

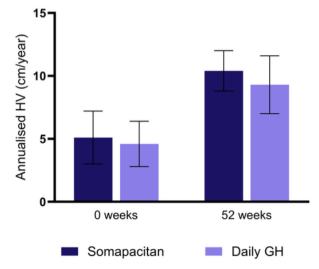

Angelica Gualtieri^{1,14}, Nikolina Kyprianou^{1,14}, Louise C. Gregory ^{2,14}, Maria Lillina Vignola^{1,14}, James G. Nicholson ¹, Rachael Tan¹, Shin-ichi Inoue³, Valeria Scagliotti¹, Pedro Casado ⁴, James Blackburn¹, Fernando Abollo-Jimenez¹, Eugenia Marinelli¹, Rachael E. J. Besser ², Wolfgang Högler ^{5,6}, I. Karen Temple⁷, Justin H. Davies ^{8,9}, Andrey Gagunashvili¹⁰, Iain C.A.F. Robinson ¹¹, Sally A. Camper ¹², Shannon W. Davis ¹³, Pedro R. Cutillas ⁴, Evelien F. Gevers ¹, Yoko Aoki ³, Mehul T. Dattani ^{2,14} & Carles Gaston-Massuet ^{1,14 ©}

Short- to medium-term response to growth hormone treatment

In 51 patients with NS and short stature, treatment **over 4 years** with somatropin 33 μg/kg/day vs 66 μg/kg/day

> Good cardiac and metabolic tolerance

Weekly Somapacitan is Effective and Well-Tolerated in Children with Noonan Syndrome: Randomised Phase 3 Trial


Alexander A. L. Jorge¹, Assunta Albanese², Michael Højby³, Kamil Soltysik³, Thomas Edouard⁴, ⁵, Anna Grandone⁶, Michael Tanseyˀ, Jun Mori⁶

ABSTRACT CODE: LB91

In 77 patients with NS and short stature, treatment over 1 year with daily somatropin (50 µg/kg/day) or weekly somapacitan (0.24 mg/kg/week)

Figure 2 - Observed height velocity from baseline to week 52.

Error bars represent SD.

Table 2 - Statistical analyses of in-study efficacy endpoints at week 52

	somapacitan 0.24 mg/kg/wk estimated mean	daily GH 0.050 mg/kg/d estimated mean	ETD (95% CI)
Annualised HV, cm/y	10.4	9.2	1.2 (0.32 to 2.03)
Change in HSDS from baseline	1.07	0.75	0.32 (0.16 to 0.48)
Change in HVSDS from baseline	6.30	5.24	1.06 (0.01 to 2.10)
Change in IGF-I SDS from baseline	2.35	1.51	0.84 (0.36 to 1.31)
Change in BA/CA ratio	0.02	0.03	-0.01 (-0.06 to 0.03)

Full analysis set (all randomised participants).

Still many unanswered questions related to rhGH treatment for NS...

- What is the long-term efficacy of rhGH treatment on adult height?
- How safe is the treatment in patients with hypertrophic cardiomyopathy?
- Could there be genotype—phenotype correlations for rhGH treatment efficacy and safety?

- Is a GH stimulation test necessary in children with short stature?
- Should a brain MRI be performed before initiating rhGH treatment?
- What is the optimal age to start rhGH therapy?
- What height threshold should be used when considering rhGH treatment?
- Could rhGH have a beneficial effect on muscle function and motor development?

Consensus guidelines for Noonan syndrome spectrum disorders

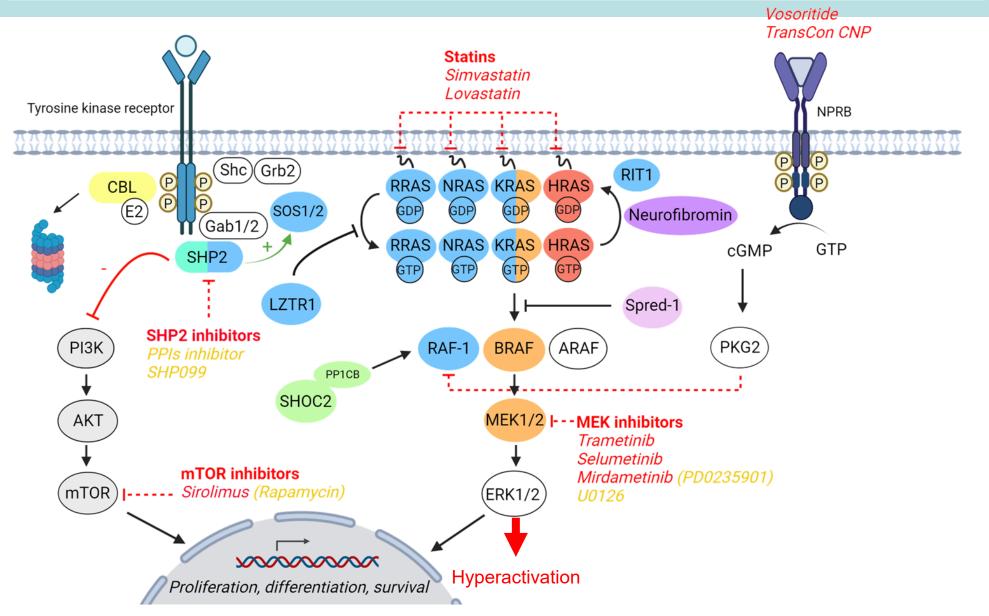
(currently being developed and validated in association with ESPE and ERN-ITHACA)

The Endocrine working group:

Atilano Carcavilla (Spain)

Laura Mazzanti and Stefano Cianfarini (Italy)

Kees Noordam (Netherlands)

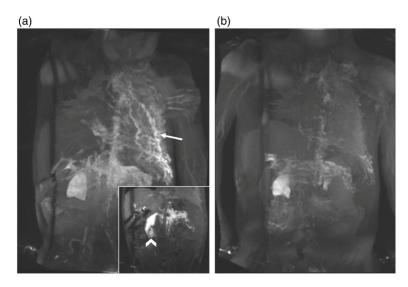

Mehul Dattani and Guftar Shaikh (UK)

Jan Lebl (Czech Republic)

Alexander Jorge (Brazil)

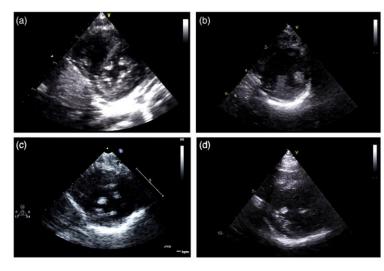
Thomas Edouard (France)

Novel therapeutic perspectives

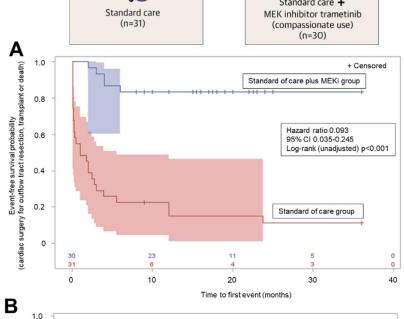


MEK inhibitors (trametinib)

Patients with NS



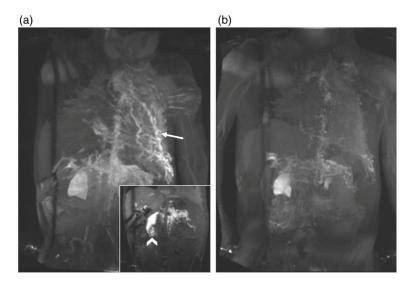
Effect on lymphovascular anomalies¹




Dori et al. 20201

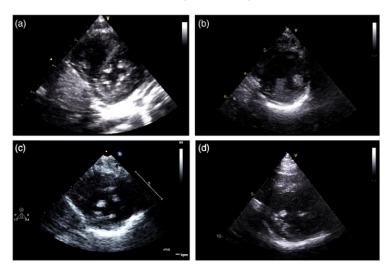
Effect on hypertrophic cardiomyopathy^{2,3}

Gelb et al. 2022²

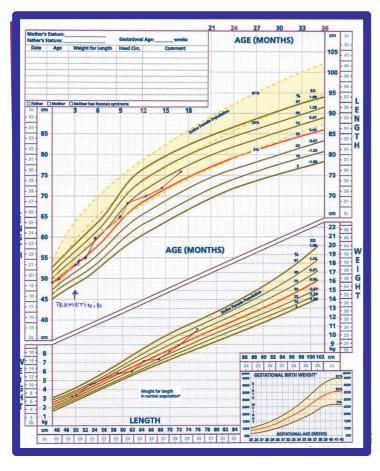


MEK inhibitors (trametinib)

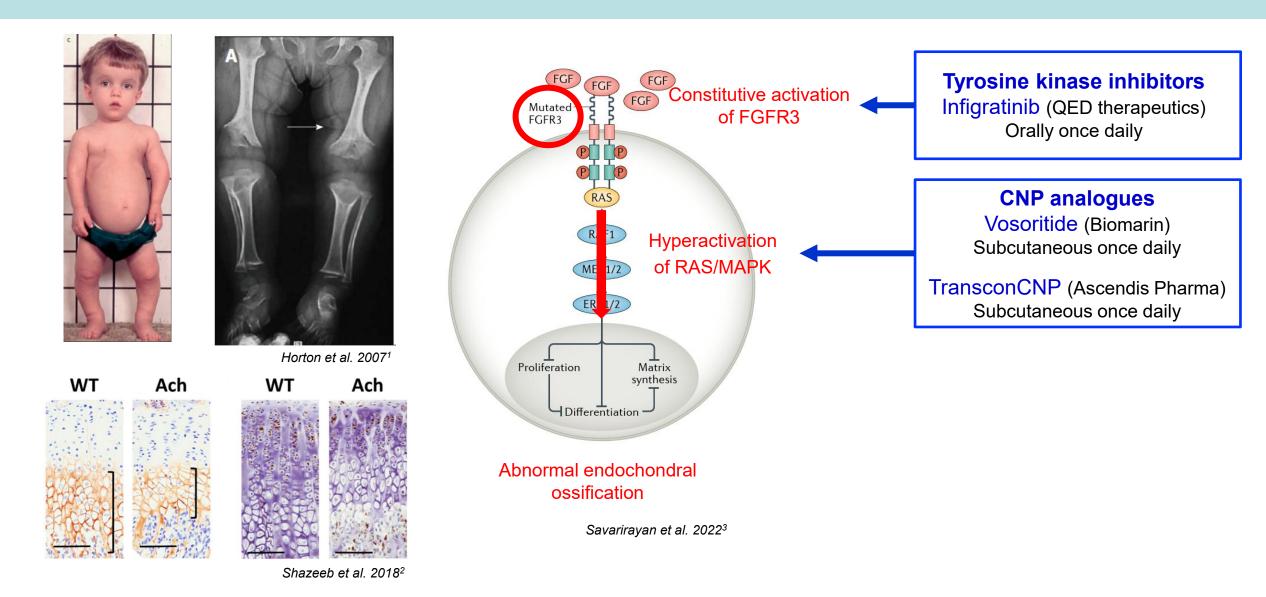
Patients with NS



Effect on lymphovascular anomalies¹

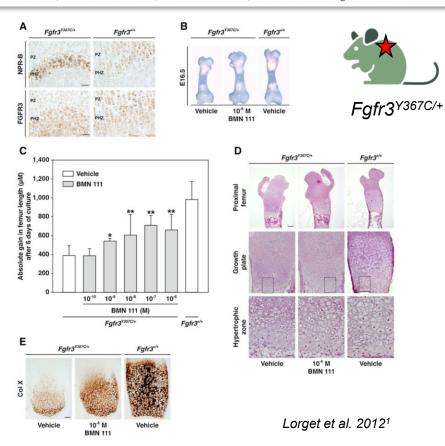

Dori et al. 20201

Effect on hypertrophic cardiomyopathy^{2,3}


Gelb et al. 2022²

Effect on growth

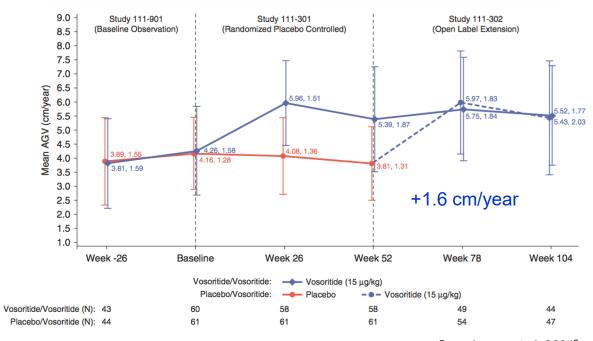
Growth chart image courtesy of Dr MA Delrue.


CNP analogues and achondroplasia

CNP analogues and achondroplasia

Evaluation of the Therapeutic Potential of a CNP Analog in a *Fgfr3* Mouse Model Recapitulating Achondroplasia

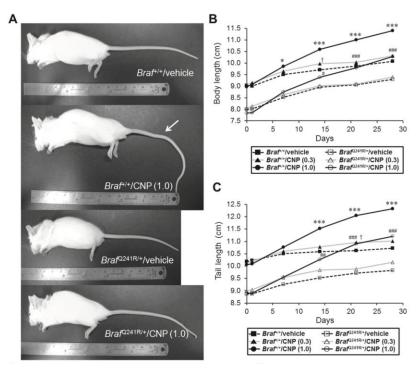
Florence Lorget,¹ Nabil Kaci,² Jeff Peng,¹ Catherine Benoist-Lasselin,² Emilie Mugniery,² Todd Oppeneer,¹ Dan J. Wendt,¹ Sean M. Bell,¹ Sherry Bullens,¹ Stuart Bunting,¹ Laurie S. Tsuruda,¹ Charles A. O'Neill,¹ Federico Di Rocco,² Arnold Munnich,² and Laurence Legeai-Mallet²,*



BRIEF COMMUNICATION

Safe and persistent growth-promoting effects of vosoritide in children with achondroplasia: 2-year results from an open-label, phase 3 extension study

Ravi Savarirayan (1) ⁶³, Louise Tofts², Melita Irving³, William R. Wilcox⁴, Carlos A. Bacino⁵, Julie Hoover-Fong⁶, Rosendo Ullot Font⁷, Paul Harmatz⁶, Frank Rutsch⁹, Michael B. Bober¹⁰, Lynda E. Polgreen¹¹, Ignacio Ginebreda¹², Klaus Mohnike¹³, Joel Charrow¹⁴, Daniel Hoernschemeyer¹⁵, Kelichi Ozono¹⁶, Yasemin Alanay¹⁷, Paul Arundel¹⁸, Yumiko Kotani¹⁹, Natsuo Yasui¹⁹, Klane K. White²⁰, Howard M. Saal²¹, Antonio Leiva-Gea²², Felipe Luna-González²², Hiroshi Mochizuki²³, Donald Basel²⁴, Dania M. Porco²⁵, Kala Jayaram²⁵, Elena Fisheleva²⁶, Alice Huntsman-Labed²⁶ and Jonathan R. S. Day²⁶



Savarirayan et al. 2021²

CNP analogues and RASopathies

Improvement of growth retardation in a CFC mouse model

Inoue et al. 2019¹

Active, not recruiting 1

Vosoritide for Selected Genetic Causes of Short Stature 2

Sponsor (i) Andrew Dauber

Information provided by

Andrew Dauber, Children's National Research Institute (Responsible Party)

Last Update Posted 1 2024-02-06

A Phase 2 Basket Study of Vosoritide in Children With Turner Syndrome, SHOX Deficiency and Noonan Syndrome With an Inadequate Response to Human Growth Hormone ³

ClinicalTrials.gov ID NCT06668805

Sponsor 1 BioMarin Pharmaceutical

Information provided by 1 BioMarin Pharmaceutical (Responsible Party)

Last Update Posted 1 2025-08-06

Take-home messages

- NS is a common genetic disorder that is now well described in childhood
- NS and related disorders are caused by mutations in the RAS/MAPK signalling pathway
 - > The hyperactivation of this pathway is responsible for the different defects
- Genotype-phenotype correlations have been established
- To date, only symptomatic treatments are available (rhGH for short stature)
 - Improves growth velocity and height SDS and increases IGF-1 levels in the medium term
 - Some issues have to be resolved (adult height, patients with HCM, genotype-phenotype correlations...)
- RAS/MAPK inhibitors or modulators (i.e. MEK inhibitors, CNP analogues) are currently being assessed

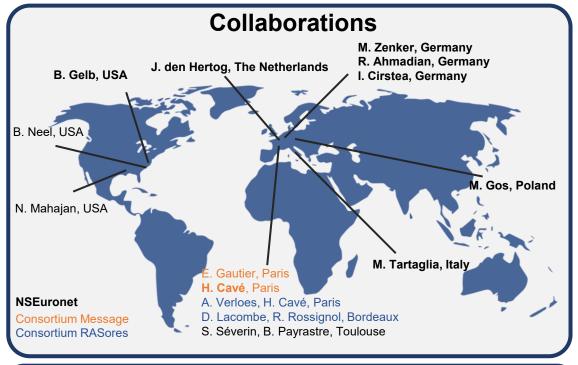
CRESCENDO Centre de Référence des Maladies Endocriniennes Rares de la Croissance et du Développement https://crescendo.aphp.fr

de la santé et de la recherche médicale

Endocrine, Bone Diseases and Genetics Unit, Children's Hospital, Toulouse University Hospital

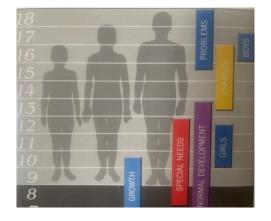
Isabelle Oliver **Audrey Cartault** Béatrice Jouret Gwenaelle Diene Alice Clerc Charlotte Garczynski Valérie Porquet Bordes Shirley Vera-Marquez

Maithé Tauber Jean Pierre Salles



Armelle Yart

Céline Saint-Laurent Laurène Mazeyrie


Topic 3 - Puberty in RASopathies

Federica Tamburrino, MD, PhD, Rare Disease Unit, Department of Pediatrics, IRCCS Policlinico di Sant'Orsola, Bologna, Italy

PUBERTY

Puberty is a process that marks the transition from childhood to adulthood, and influences the development of secondary sexual characteristics, reproductive organs, growth velocity and final height (FH), and self-esteem

OUTLINE

- The challenge of puberty in RASopathies
- Noonan syndrome as a model
- Extending to other conditions
- What we know about the mechanisms
- What clinicians should do
- What still needs to be learned
- Take home messages

1. The Challenge of Puberty in RASopathies

What is known from the literature regarding puberty in RASopathies?

Delayed Puberty is frequent

Pubertal Onset is usually spontaneous

Sex Differences

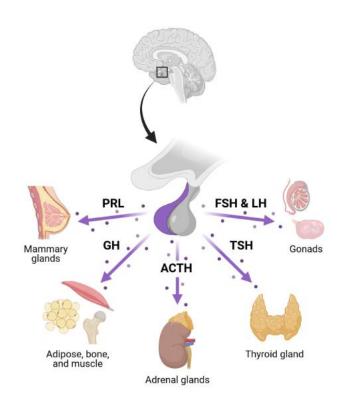
Impact on Final Height and Psychosocial well-being

Hormonal Alterations affecting fertility

2. Noonan syndrome as a model

Delayed Puberty

- Pubertal onset: typically delayed by ~2 years (not in all patients)
- Growth during puberty: secondary peak growth rate lower than general population (GP)
- Multiple cases of delayed puberty described and primary amenorrhea reported in some cases
- Puberty progression: in some patients, onset is within normal range but progression is slow


	Age at start puberty			
	Males		Females	
	Age	% delay	Age	% delay
Shaw et al., 2007	14.5 yrs (10-18)		14 yrs (10-18)	
Romano et al., 2009	> 13.5 yrs	35%	> 13 yrs	44%
Libraro et al., 2021	12.1±2.3 yrs	10%	12.1±1.3 yrs	45%
Rezende et al., 2022	12.5±1.7 yrs	27.9%	11.9±1.9 yrs	49.1%
Patti et al., 2024	12.3 yrs±2.7 DS		13.3±0.8 yrs	
Tamburrino et al., 2025	11.96±0.17 yrs	2.6%	12.92±0.25 yrs	23%
				Reference Networks

Pubertal Onset

- Despite the delay, puberty begins spontaneously in most
 NS patients, indicating normal hypothalamic-pituitary function
- Consider:
 - mild alteration in GnRH pulsatility
 - partial pituitary resistance to GnRH

delay in HPG axis maturation

Sex differences

Females

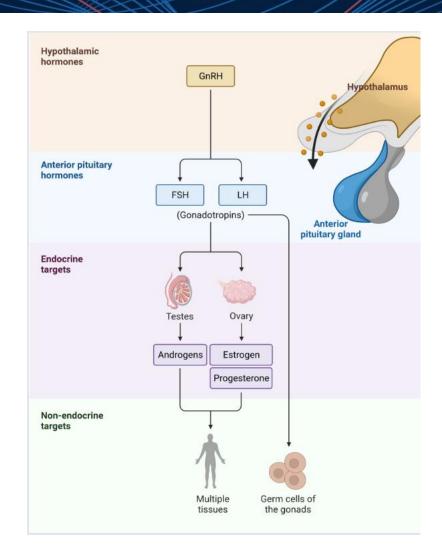
- **Puberty onset:** more often delayed compared to males
- Fertility: generally preserved

Males

- Puberty onset: may be delayed
- **Cryptorchidism:** present in 60–77% of patients
 - Similar frequency in normal and delayed puberty groups
 - Impact on puberty: minimal
 - Impact on fertility: can impair spermatogenesis
- Fertility: reduced (not limited to pts with cryptorchidism); exact prevalence unknown

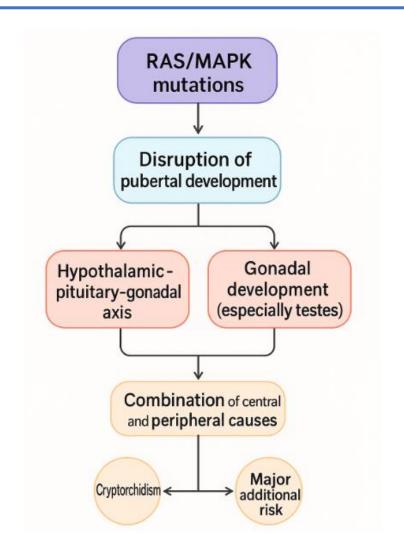
Rezende et al., 2022 Tamburrino et al., 2025

Impact on Final Height and Psychosocial Development


- The **age of onset** and the **duration** of pubertal development significantly **influence** the **growth spurt and near adult height** in RASopathies, exacerbating the typical growth deficits associated with these conditions.
- In RASopathies, delayed pubertal development and inadequate pubertal catch-up growth could contribute to the observed reduced adult height
- Emotional and social challenges due to delayed development

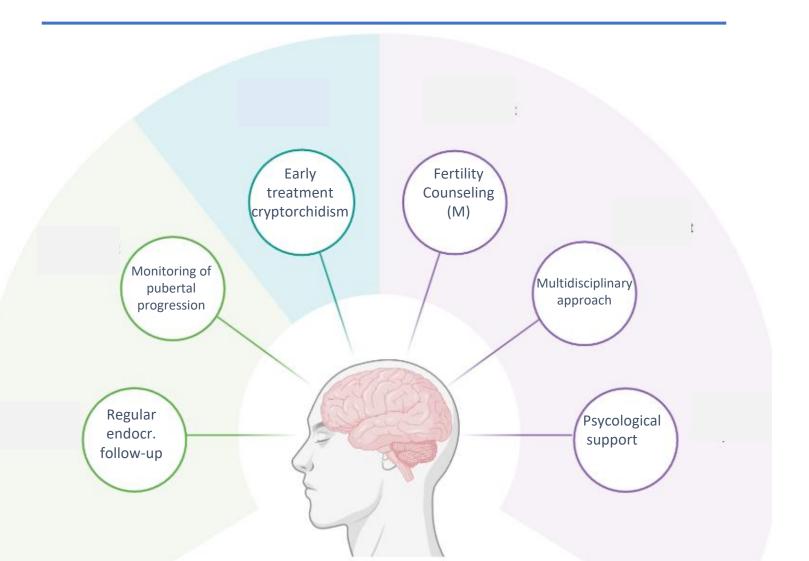
Hormonal Alterations

- Altered levels of LH, FSH, and sex steroids reported in several studies
- Notably, in males with NS, fertility appears to be reduced, probably due to
 - the high incidence (60–77%) of cryptorchidism
 - primary alterations in the activity of Sertoli and Leydig cells


3. Extending to other conditions

Syndrome	Delayed Puberty	Precocious Puberty	Notes / Evidence
NSML	Possible / scarce data	Rare / unknown	Very limited case reports
Costello	Reported	Anecdotal	Mixed pattern, mostly delayed
CFC	Reported	Anecdotal	Possible hypogonadism, limited evidence

(Arnold-Chiari malformation, hyperprolactinemia, or GHD)



4. What We Know About the Mechanisms


5. What Clinicians Should Do

6. What still need to be learned

Personal data

Impact of pubertal timing on growth progression and final height in subjects affected by RASopathies

Federica Tamburrino ^{1*†}, Laura Mazzanti ^{2†}, Dino Gibertoni ³, Concetta Schiavariello ¹, Annamaria Perri ¹, Eleonora Orlandini ⁴, Cesare Rossi ⁵, Marco Tartaglia ⁶, Marcello Lanari ¹ and Emanuela Scarano ¹

Frontiers in Endocrinology (2025)

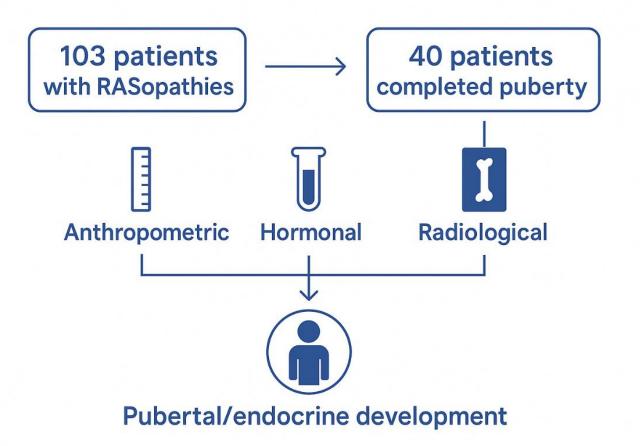
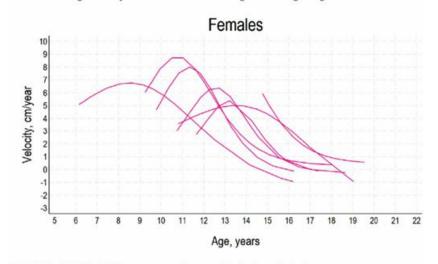


TABLE 1A Subgrouping of the studied RASopathy cohort by genotype.

	Entire cohort				
Genotype	n	%			
Noonan syndrome	30	75.0			
PTPN11	24	80.0			
KRAS	2	6.7			
RAF1	2	6.7			
RIT1	1	3.3			
SOS1	1	3.3			
Noonan syndrome with multiple lentigines					
PTPN11	1	2.5			
Cardiofaciocutaneous syndrome	Cardiofaciocutaneous syndrome				
BRAF	1	2.5			
Mazzanti syndrome					
SHOC2	7	17.5			
Legius syndrome					
SPRED1	1	2.5			
Total	40	100.0			

n, number of patients.

TABLE 2 Comparison of pubertal data of the study cohort with the general population (GP).


	Study cohort (mean <u>+</u> SDS)	GP (mean <u>+</u> SDS)	test; p-value			
	Age at onset of puberty (years)					
M	11.96 ± 0.17	12.05 ± 0.85	-0.5; 0.586			
F	12.92 ± 0.25	10.3 ± 0.95	10.7; <0.001			
Age at PHV (years)						
M	14.28 ± 0.18	13.91 ± 0.84	2.1; 0.035			
F	12.86 ± 0.23	11.89 ± 0.90	4.2; <0.001			
PHV (cm/years)						
M	8.30 ± 0.22	8.80 ± 1.05	-2.3; 0.021			
F	5.89 ± 0.20	8.13 ± 0.78	-11.1; <0.001			
Spurt gain (cm)						
M	25.98 ± 0.91	27.56 ± 3.54	-1.7; 0.084			
F	13.80 ± 1.25	25.25 ± 4.14	-9.2; <0.001			

Data referring to the GP are from (5).

PHV, peak of height velocity.

a. Individual height velocity curves for females according to chronological age

b. Individual height velocity curves for males according to chronological age

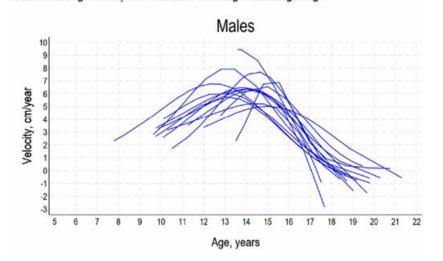


TABLE 3 Comparison of pubertal data by genotype (PTPN11 vs SHOC2 patients).

PUBERTAL CLINICAL PARAMETERS	<i>PTPN11</i> (n=25) Median [IQR]	<i>SHOC2</i> (n=7) Median [IQR]	p-value
Age at puberty onset (yrs)	12.33 [11.32-13.25]	12.73 [11.42-14.07]	0.469
Height at puberty (cm)	135.55 [131.95-140.8]	133.9 [129.5-143.5]	0.686
Spurt duration (yrs)	6.64 [5.43-7.75]	5.665 [3.23-7.995]	0.764
PHV (cm)	7.86 [6.60-8.33]	6.19 [5.43-6.34]	0.070
Spurt gain (cm)	20.6 [19.6-26.2]	14.25 [3.40-29.95]	0.531
Age at menarche (yrs)	14.45 [12.28-16.40]	19.4 [14.64-19.41]	0.066
Final height (cm)	159.3 [151.7-165.8]	149.5 [148.4-158.4]	0.256

PHV, peak of height velocity.

Final Height according to pubertal timing

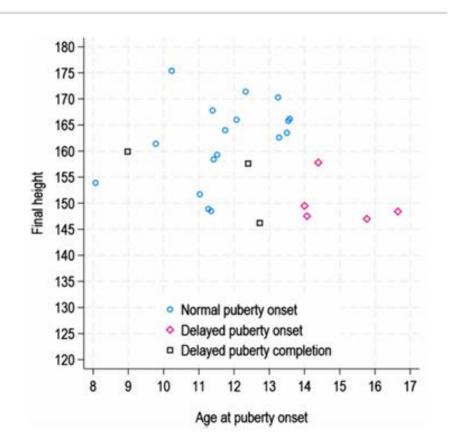


TABLE 4 Comparison of clinical and pubertal features by GH-therapy in the studied RASopathy cohort.

PARAMETERS	GH-treated patients (23 pts) Median [IQR]	Untreated GH patients (5 pts) Median [IQR]	p-value
Age at 1st evaluation (yrs)	5.26 [3.09, 9.25]	6.09 [4.85, 7.66]	0.976
Height at 1st evaluation SDS	-2.9 [-3.5, -2.1]	-1.2 [-2.0, -0.4]	0.032
Age at PHV (yrs)	14.2 [12.6, 15.4]	13.4 [12.7-13.9]	0.529
Height at PHV (cm)	145.9 [141.1-154.1]	152.2 [135.6-154.4]	0.787
Spurt duration (yrs)	6.2 [5.4, 7.3]	8.1 [3.8-9.6]	0.407
Spurt gain (cm)	21.5 [15.7, 25.4]	25.7 [16.9-33.4]	0.286
Final height (cm)	157.8 [148.5-165.8]	159.9 [154.4-164.0]	0.653
Final height SDS	-2.2 [-2.6, -1.5]	-1.7 [-2.3, -0.7]	0.286
Target height (cm)	166.5 [160.0, 171.0]	161.75 [158.0-167.5]	0.417
Pubertal timing, n (%)			0.118 ^
■ normal	15 (71.4%)	3 (60.0%)	
■ delayed onset	5 (23.8%)	0	
■ delayed completion	1 (4.8%)	2 (40.0%)	

GH, growth hormone; pts, patients; PHV, peak of height velocity, yrs, years. Mann-Whitney test except $^{\land}$ (Fisher's exact test).

Take Home Messages: Puberty and Growth in RASopathies

Delayed puberty onset

negatively affects final height;
 insufficient pubertal growth spurt

Puberty generally starts spontaneously

Careful monitoring of growth and pubertal progression

 to optimize therapeutic interventions and improve final height outcomes

Research gaps remain

- need for further studies

Centro Hub Regionale Malattie Rare Pediatriche SS-UO Malattie Rare Congenito-Malformative U.O.Pediatria-Lanari

IRCCS Azienda Ospedaliero-Universitaria Sant'Orsola Tel 051 2143723

Email ambulatorio.malattie.rare@aosp.bo.it

E. Scarano, F. Tamburrino, C. Schiavariello, E. Orlandini

Case Manager M. Guidetti, IP C. Mazzari, S. Malaguti Membro ERN-ITHACA, HCP F. Tamburrino, Laura Mazzanti, Emanuela Scarano

Membro ENDO-ERN

Psicologhe: M. Foresti, S.Palmeira, F. Stortoni

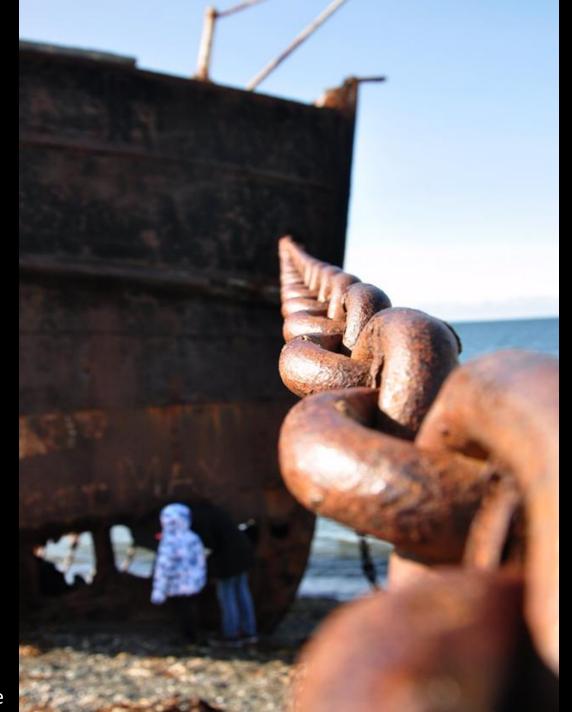
Founder of the Rare Disease Center

Laura Mazzanti, Professor of Alma Mater

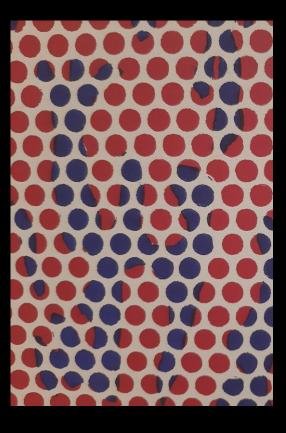
Topic 4 - Metabolic Profile in Patients with Noonan Syndrome

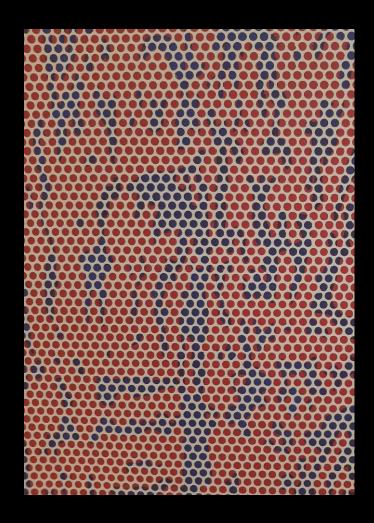
Alexander A L Jorge, Associate Professor at the University of São Paulo (USP), Head and Principal Investigator of the Genetic Endocrinology Unit at Hospital das Clínicas, University of São Paulo, São Paulo, Brazil

Disclosures

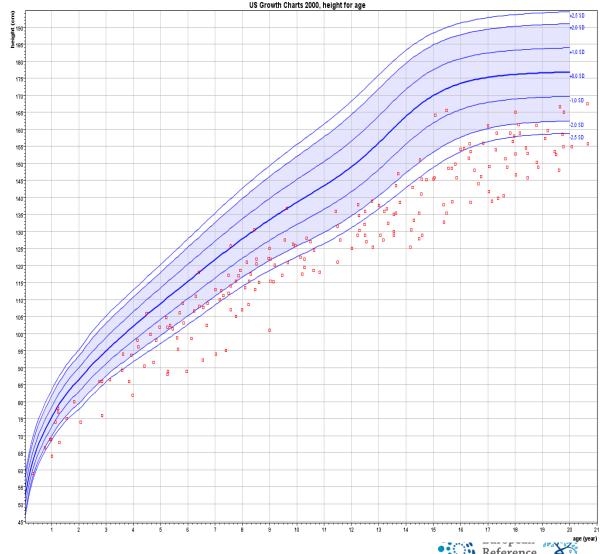

No potential conflicts of interest in relation to this presentation

In the past 12 months, received speaker fees from Pfizer, Sandoz, BioMarin and NovoNordisk

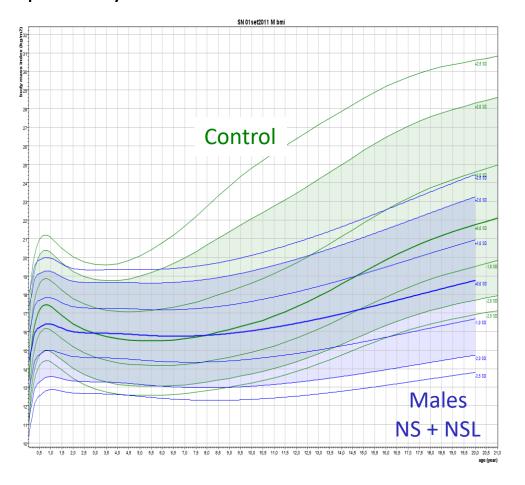

Member of advisory board and clinical trial of NovoNordisk

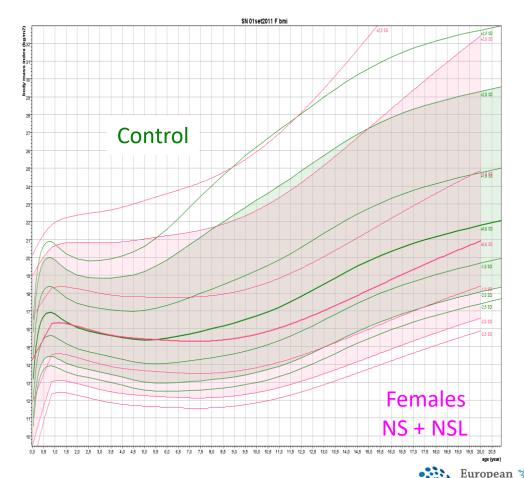

Independent research grant from BioMarin

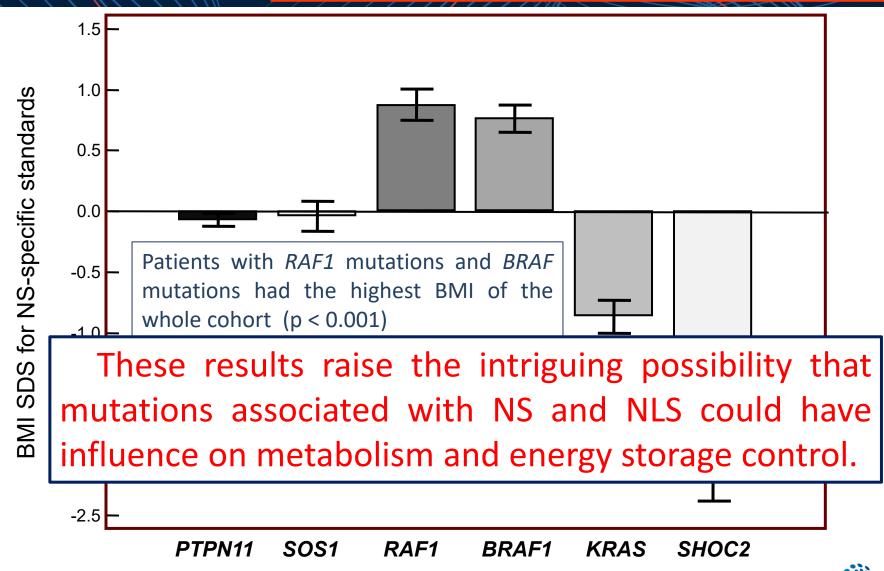
Patients or their guardians have given permission to use the photos for this lecture



Age	Height SDS
1mo – 2y	-1.9 ± 1.6
2y - 5y	-2.0 ± 1.2
5y – 10y	-2.1 ± 1.1
12y - 18y	-3.2 ± 1.3

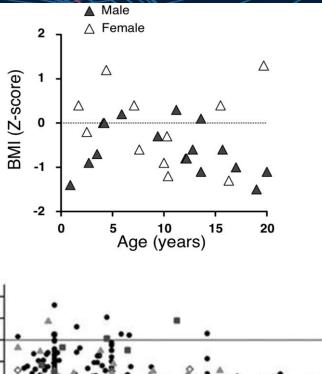

Total of 137 patients Adult height (n = 60)

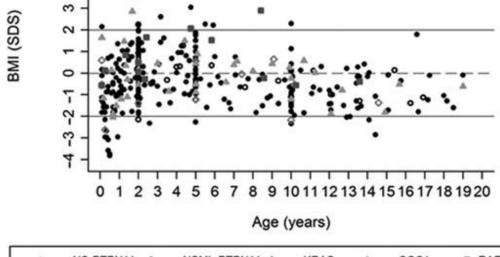

Males = 157.2 ± 7.5 cm Females = 150.6 ± 7.7 cm


Our cohort was shorter in stature than the average normal Brazilian population, corresponding to a height SDS of -2.6 and -2.0 for males and females, respectively.

The mean BMI observed values correspond to -1.2 and -0.7 SDS for Brazilian healthy men and women, respectively

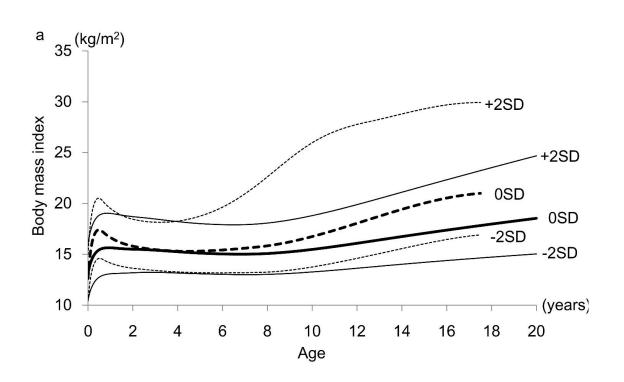
One study evaluated 45 adults with NS and observed a lower incidence of overweight or obesity than observed in the general population (mainly among men).

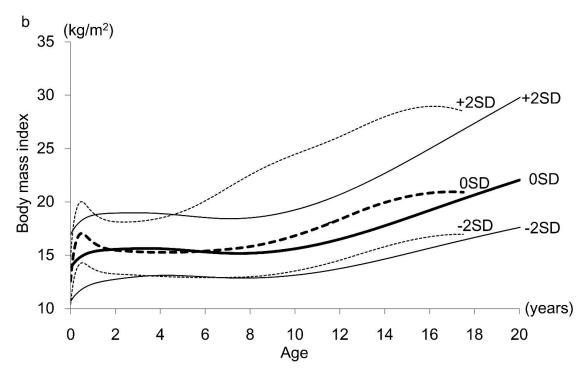

Binder *et al.* J Pediatr **2012**; 161(3): 501-505


420 patients (176 females and 244 males)

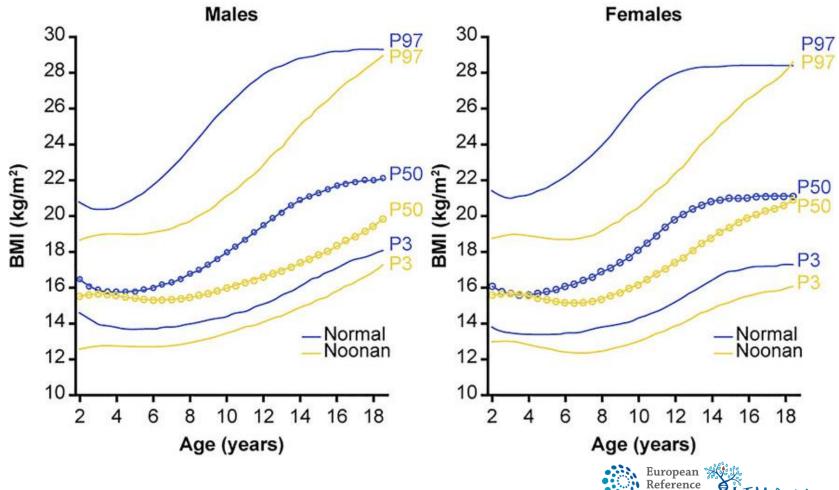
- NS-PTPN11 n= 244
- NSML-PTPN11 n = 25

Patients with NS had lower BMI at 10 years. No difference between genotypes was demonstrated


Cessans et al. Eur J Endocrinol. 2016; PMID: 26903553



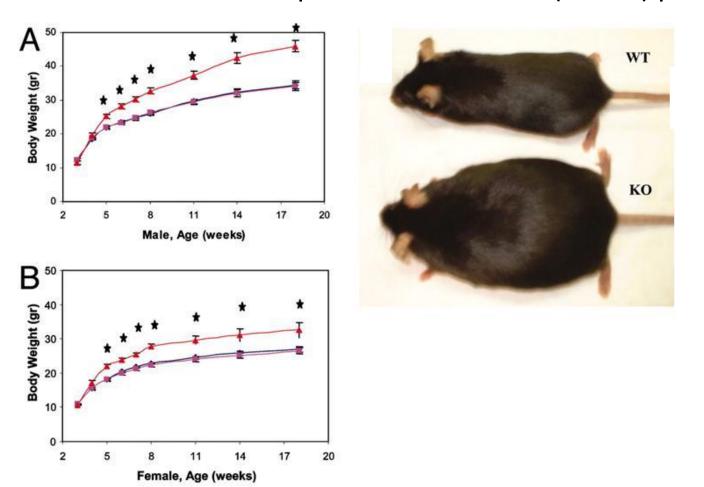
308 subjects (males: 159 and females: 149)

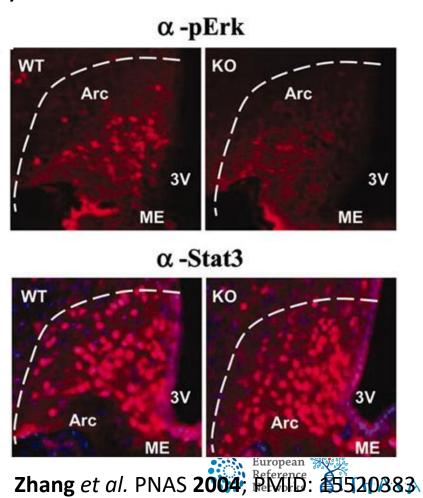

190 patients

106 males : 84 females 66% *PTPN11*

BMI for both females and males with NS was below the reference curve for the general Italian population.

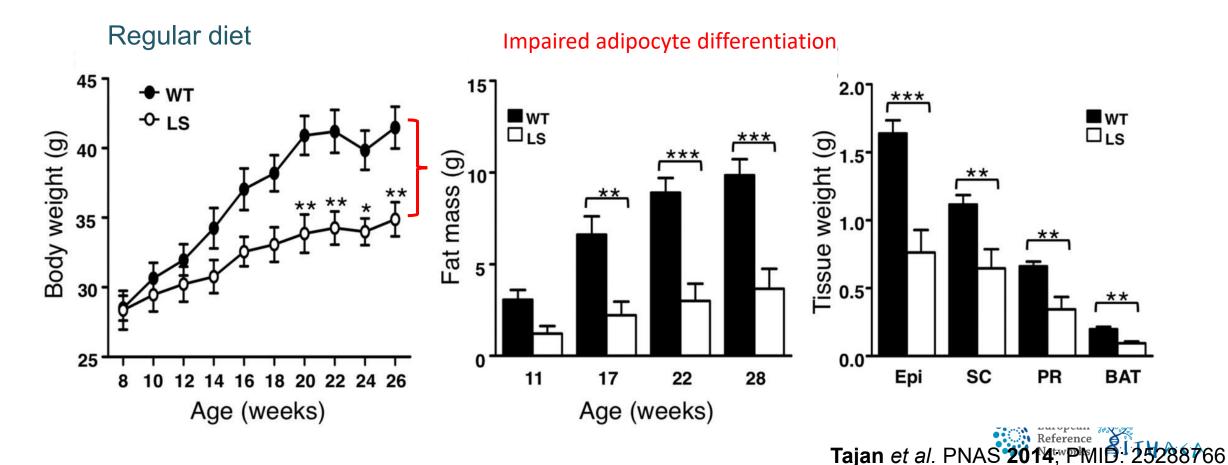
This trend was seen up to approximately 12 years of age, after which patients seemed to progressively gain weight.

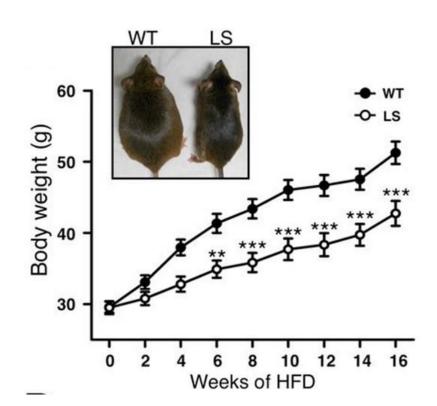

Both females and males with *PTPN11* mutations had lower BMIs than those with "other mutations",



Cappa et al. Horm Res Paediatr. 2024; PMID: 38964306

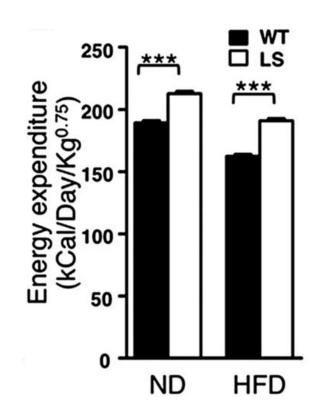
Mice with selected deletion of Shp2 in forebrain neurons developed early-onset obesity, due to the decrease of leptin-stimulated Erk (MAPK) pathway



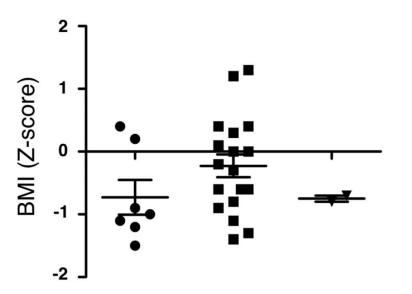

Knock-in mouse model carrying the T468M mutation (SHP2 mutations in Leopard syndrome/NSML patients)

NS variants: SHP2 gain-of-function $\rightarrow \uparrow$ RAS-MAPK;

LS/NSML variants : catalytically impaired (dominant-negative) SHP2 -> PI3K-AKT/mTOR-shifted signaling



High fat diet


LS Mice Are Resistant to HFD-Induced Obesity

Caloric expenditure

28 adults with NSML

Z-score of adipose tissue between -2.4 to -1.8

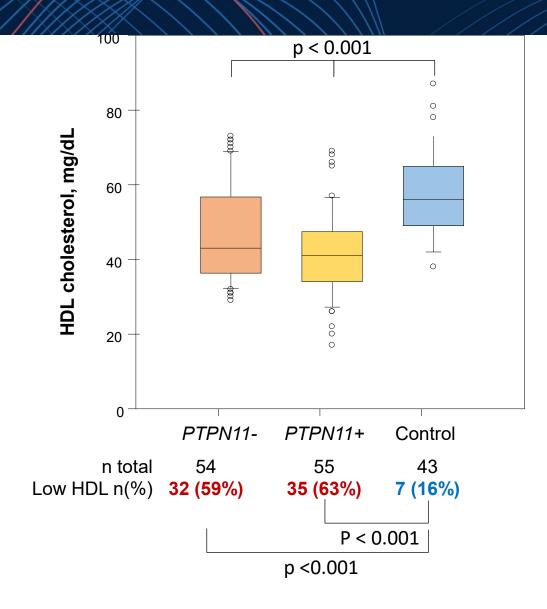
Y279C T468M Q510P/E

Tajan et al. PNAS 2014, PMID: 25288766

Unfavorable metabolic profile in Noonan syndrome

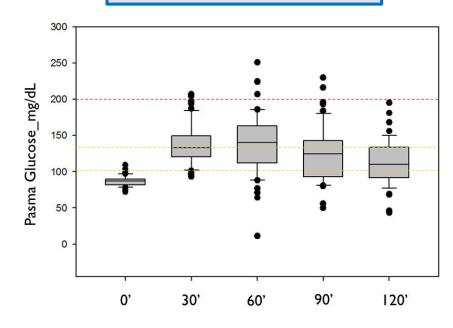
185 patients (112 prepubertal children and 73 adults)

NS (n = 178) and CFCS (n = 7)


Exclusion criteria: Medications that interfere with glucose or lipid homeostasis, chronic disease malnutrition, and a positive familial history of dyslipidemia and diabetes mellitus.


Control group (n = 43): healthy children from the same community as the patients.

	NS (Total)	NS (PTPN11 +)	NS (PTPN11 -)	Controls	р	р
	n:112	n:57	n:55	n:43	(NS vs control)	(PTPN11 + vs -)
Sex (F:M)	46:66	19:38	27:28	19:24	0.865	0.133
CA, years	7.7 (2.6 to 16)	7.1 (4.1 to 16) ^a	8.4 (2.6 to 14.4) ^a	9.7 (7.2 to 12.6)	<0.001	0.221
Height SDS	-2.2 ± 1.2	-2.3 \pm 1.1 a	- $2.1\pm1.3^{\text{a}}$	0.9 (-1.7 to 2.1)	<0.001	0.459
BMI SDS	-0.4 (-4.7 to 2.4)	-0.5 (-3.2 to 1.3)	- 0.3 (-4.7 to 2.4)	-0.4 (-2.0 to 1.7)	0.293	0.777


Low HDL-cholesterol

Elevated triglycerides levels

54 patients with NS (31 females / 22 males) CA = 14.5 to 61.2 years. 75g OGTT

Ten patients (18%) had impaired glucose tolerance (IGT)

Abnormal OGTT

5 males and 5 females

PTPN11 (6x), RIT1, LZTR1, RAF1, SHOC2

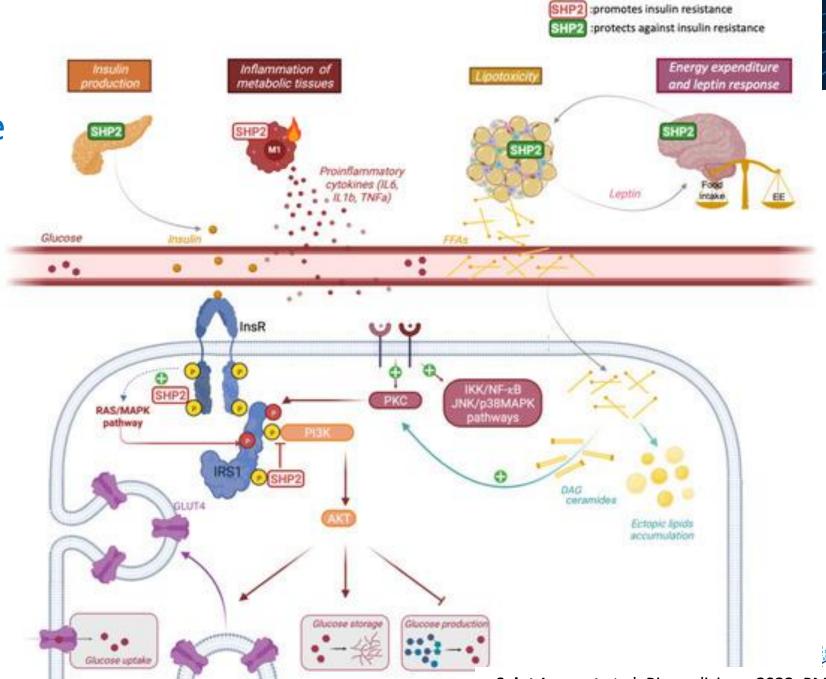
Age: $26.5 \pm 5.6 \text{ y} (17.8 \text{ to } 37.7 \text{ y})$

BMI: $21 \pm 3 \text{ kg/m}^2$

- 2 underweight
- 7 appropriate weight
- 1 overweight

Low HDL-cholesterol 50%

GWAS Catalog


SNPs in *PTPN11* associated with:

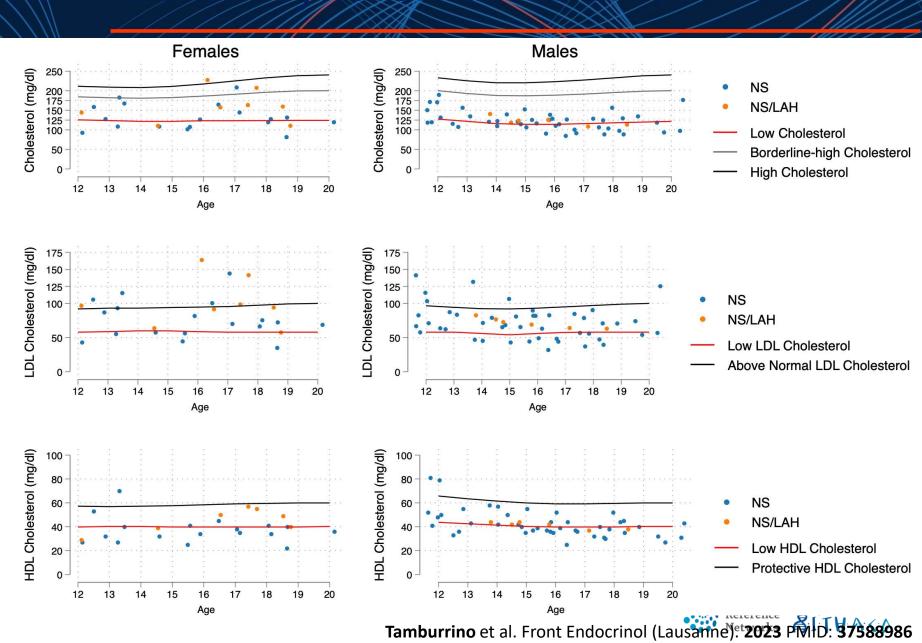
- Low LDL-cholesterol levels (5 associations)
- Low HDL-cholesterol levels (4 associations)
- Triglycerides (2 associations)

Diagnosis of Metabolic Syndrome			
Adult Criteria 3+ criteria	Pediatric Criteria 2+ criteria		
WC > 102 cm (men) or 88 cm (women)	WC ≥ 90 th percentile for age and gender		
Triglycerides ≥ 150 mg/dL	Triglycerides ≥ 150 mg/dL		
HDL-C < 40 (men) or < 50 (women)	HDL-C < 40 mg/dL		
Systolic BP > 130 mmHg or > 85 mmHg diastolic	Systolic BP ≥ 130 or diastolic ≥ 85 mmHg		
Fasting glucose ≥ 100 mg/dL Or known T2DM	Fasting glucose ≥ 100 mg/dL Or known T2DM		

SHP 2 (PTPN11) and

Insulin Resistance

N = 93 CA = 9.5 ± 6.2 years BMI SDS = -0.3 ± 1.2 52.7% *PTPN11*


Low

- Total cholesterol
- HDL-cholesterol

(in particular in PTPN11)

Triglycerides showed an increasing trend with age only in NS females.

Normal glucose metabolism (HOMA-IR)

 Low BMI is frequently observed in childhood, but in adulthood it is a phenotype more commonly seen in men with Noonan syndrome.

There appears to be a metabolic profile in patients with Noonan syndrome characterized by:

- Resistance to weight gain
- Low total cholesterol and HDL cholesterol
- Tendency toward elevated triglycerides Reference Networks

In our clinic, we currently have 81 adult patients with NS under annual follow-up

None have developed diabetes or had a cardiovascular event.
 (70% women, median age 31 years)

Long-term, large cohort studies are needed to define the clinical significance of these findings in terms of:

- Cardiovascular risk
- Risk for diabetes

Acknowledgment

Debora Bertola

Alexsandra Malaquias

Lize Ferreira

Renata Noronha

AlexJ @endogenetica

alexj@usp.br

Picture from speaker's personal archive

Time for questions and discussion



Time for questions

- Satisfaction Survey :
- https://forms.office.com/e/FYeG2sTkPC
- Website:
 - https://ern-ithaca.eu
 - https://ern-ithaca.eu/webinars/

Thank you for your participation

